分析 首先过点C作CE⊥AD于点E,由∠ACB=90°,AC=3,BC=4,可求得AB的长,又由直角三角形斜边上的高等于两直角边乘积除以斜边,即可求得CE的长,由勾股定理求得AE的长,然后由垂径定理求得AD的长.
解答
解:过点C作CE⊥AD于点E,
则AE=DE,
∵∠ACB=90°,AC=3,BC=4,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=5,
∵S△ABC=$\frac{1}{2}$AC•BC=$\frac{1}{2}$AB•CE,
∴CE=$\frac{AC•BC}{AB}$=$\frac{3×4}{5}$=$\frac{12}{5}$,
∴AE=$\sqrt{A{C}^{2}-C{E}^{2}}$=$\frac{9}{5}$,
∴AD=2AE=$\frac{18}{5}$.
点评 此题考查了垂径定理、勾股定理以及直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
科目:初中数学 来源: 题型:选择题
| A. | 0.03 | B. | 0.02 | C. | 30.03 | D. | 29.97 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 6a3b=3a2•2ab | B. | (x+2)(x-2)=x2-4 | ||
| C. | 2x2+4x-3=2x(x+2)-3 | D. | ax-ay=a(x-y) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com