精英家教网 > 初中数学 > 题目详情
1.先化简,再求值:
x2y-2($\frac{1}{4}$xy2-3x2y)+(-$\frac{1}{2}$xy2-x2y),其中|x-$\frac{3}{2}$|+(y+2)2=0.

分析 原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.

解答 解:原式=x2y-$\frac{1}{2}$xy2+6x2y-$\frac{1}{2}$xy2-x2y=6x2y-xy2
∵|x-$\frac{3}{2}$|+(y+2)2=0,
∴x=$\frac{3}{2}$,y=-2,
则原式=-27-6=-33.

点评 此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.已知a、b表示两个不同点A、B的有理数,且|a|=5,|b|=2,它们在数轴的位置如图所示.
(1)试确定a、b的数值.
(2)表示a、b两数的点相距多远?
(3)若C点在数轴上,C点到A点的距离是C点到B点距离的3倍,求C点表示的数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知x、y为实数,且$\sqrt{x-1}$+(y-$\sqrt{2}$)2=0,则x•y值的为$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是$\frac{1}{2}$n(n+1).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,已知△ABC为⊙O的内接三角形,若∠ABC+∠AOC=90°,则∠AOC=(  )
A.30°B.45°C.60°D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.发现(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,请你判断∠1+∠2与∠A有何数量关系,直接写出你的结论,不必说明理由

思考(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=100°,求∠BIC的度数;
拓展(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.一张纸的厚度为0.1mm,对折一次0.2mm,对折2次0.4mm,对折n次后厚度是0.1×2nmm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列说法中错误的是(  )
A.0既不是正数,也不是负数
B.若仓库运进货物5t记作+5t,那么运出货物5t记作-5t
C.0是自然数,也是整数,也是有理数
D.一个有理数不是正数,那它一定是负数

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某农户去年承包荒山若干亩,投资7800元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需8人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.
(1)分别用a,b表示两种方式出售水果的收入?
(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.
(3)该农户加强果园管理,力争到明年纯收入达到15000元,那么纯收入增长率是多少?(纯收入=总收入-总支出,该农户采用了(2)中较好的出售方式出售)

查看答案和解析>>

同步练习册答案