精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形是一张放在平面直角坐标系中的长方形纸片,为原点,点轴的正半轴上,点轴的正半轴上,.在边上取一点,将纸片沿翻折,使点落在边上的点.

(1)求的长;

(2)求直线的表达式;

(3)直线平行,当它与矩形有公共点时,直接写出的取值范围.

【答案】(1);(2);(3)

【解析】

(1)先根据勾股定理求出BE的长,进而可得出CE的长,在Rt△DCE中,由DE=OD及勾股定理可求出OD的长;

(2)根据CE、OD的长求得D、E的坐标,然后根据待定系数法即可求得表达式;

(3)根据平行的性质分析讨论即可求得.

解:(1)依题意可知,折痕是四边形的对称轴,

∴在中,

中,

又∵

(2)∵

设直线的解析式为

,解得

∴直线的解析式为.

(3)∵直线平行,

∴直线为

∴当直线经过点时,,则

当直线经过点时,则

∴当直线与矩形有公共点时,

故答案为:(1);(2);(3)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,平行四边形 ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.

(1)求证:△AOD ≌ △EOC;

(2)连接AC,DE,当∠B∠AEB _______ °时,四边形ACED是正方形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,矩形OABC的边OA、OC分别落在x轴、y轴上,O为坐标原点,且OA=8,OC=4,连接AC,将矩形OABC对折,使点A与点C重合,折痕ED与BC交于点D,交OA于点E,连接AD,如图①.
(1)求点D的坐标和AD所在直线的函数关系式;
(2)⊙M的圆心M始终在直线AC上(点A除外),且⊙M始终与x轴相切,如图②.
①求证:⊙M与直线AD相切;
②圆心M在直线AC上运动,在运动过程中,能否与y轴也相切?如果能相切,求出此时⊙M与x轴、y轴和直线AD都相切时的圆心M的坐标;如果不能相切,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】县内某小区正在紧张建设中,现有大量的沙石需要运输,“建安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.
(1)求“建安”车队载重量为8吨、10吨的卡车各有多少辆?
(2)随着工程的进展,“建安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有(

A、B两地相距60千米;

出发1小时,货车与小汽车相遇;

小汽车的速度是货车速度的2倍;

出发1.5小时,小汽车比货车多行驶了60千米.

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:∠1和∠4AB______________所截得的________角,∠3和∠5___________________所截得的_________角,∠2和∠5____________________所截得的________角,ACBCAB所截得的同旁内角是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB,CD相交于点O,OEAB于O,若BOD=40°,则不正确的结论是( )

A.AOC=40° B.COE=130° C.EOD=40° D.BOE=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小米手机越来越受到大众的喜爱,各种款式相继投放市场,某店经营的A款手机去年销售总额为50000元,今年每部销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.

(1)今年A款手机每部售价多少元?

2)该店计划新进一批A款手机和B款手机共60部,且B款手机的进货数量不超过A款手机数量的两倍,应如何进货才能使这批手机获利最多?

AB两款手机的进货和销售价格如下表:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校数学魔盗团社团准备购买A,B两种魔方,已知购买2A种魔方和6B种魔方共需130元,购买1A种魔方比1B种魔方多花5元.

(1)求这两种魔方的单价;

(2)结合社员们的需求,社团决定购买A,B两种魔方共100(其中A种魔方不超过50).“11期间某商店有两种优惠活动,如图所示.请根据以上信息填空:购买A种魔方________个时选择活动一盒活动二购买所需费用相同.

查看答案和解析>>

同步练习册答案