如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:
①∠AEF=∠BCE;
②AF+BC>CF;
③S△CEF=S△EAF+S△CBE;
④若
=
,则△CEF≌△CDF.
其中正确的结论是 .(填写所有正确结论的序号)
![]()
①③④
【解析】
试题分析:∵EF⊥EC,
∴∠AEF+∠BEC=90°,
∵∠BEC+∠BCE=90°,
∴∠AEF=∠BCE,故①正确;
又∵∠A=∠B=90°,
∴△AEF∽△BCE,
∴
,
∵点E是AB的中点,
∴AE=BE,
∴
,
又∵∠A=∠CEF=90°,
∴△AEF∽△ECF,
∴∠AFE=∠EFC,
过点E作EH⊥FC于H,
![]()
则AE=DH,
在Rt△AEF和Rt△HEF中,
,
∴Rt△AEF≌Rt△HEF(HL),
∴AF=FH,
同理可得△BCE≌△HCE,
∴BC=CH,
∴AF+BC=CF,故②错误;
∵△AEF≌△HEF,△BCE≌△HCE,
∴S△CEF=S△EAF+S△CBE,故③正确;
若
,则tan∠BCE=
,
∴∠BEC=60°,
∴∠BCE=30°
∴∠DCF=∠ECF=30°,
又∵∠D=∠CEF, CF=CF
∴△CEF≌△CDF(AAS),故④正确,
综上所述,正确的结论是①③④.
故答案为:①③④.
考点:1、矩形的性质;2、全等三角形;3、三角函数;4、相似三角形
科目:初中数学 来源:2014年初中毕业升学考试(内蒙古呼和浩特卷)数学(解析版) 题型:解答题
如图,已知反比例函数
(x > 0,k是常数)的图象经过点A(1,4),点B(m , n),其中m>1, AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.
(1)写出反比例函数解析式;
(2)求证:∆ACB∽∆NOM;
(3)若∆ACB与∆NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(内蒙古包头、乌兰察布卷)数学(解析版) 题型:解答题
如图,已知∠MON=90°,A是∠MON内部的一点,过点A作AB⊥ON,垂足为点B,AB=3厘米,OB=4厘米,动点E,F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度沿OM方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动.设运动时间为t秒(t>0).
(1)当t=1秒时,△EOF与△ABO是否相似?请说明理由;
(2)在运动过程中,不论t取何值时,总有EF⊥OA.为什么?
(3)连接AF,在运动过程中,是否存在某一时刻t,使得S△AEF=
S四边形ABOF?若存在,请求出此时t的值;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(内蒙古包头、乌兰察布卷)数学(解析版) 题型:填空题
某学校举行演讲比赛,5位评委对某选手的打分如下(单位:分)9.5,9.4,9.4,9.5,9.2,则这5个分数的平均分为 分.
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(内蒙古包头、乌兰察布卷)数学(解析版) 题型:选择题
在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是( )
A.y=3(x+1)2+2 B.y=3(x+1)2﹣2
C.y=3(x﹣1)2+2 D.y=3(x﹣1)2﹣2
查看答案和解析>>
科目:初中数学 来源:2013-2014学年北京市燕山区中考一模数学试卷(解析版) 题型:解答题
已知关于x一元二次方程
有两个不相等的实数根
(1)求k取值范围;
(2)当k最小的整数时,求抛物线
的顶点坐标以及它与x轴的交点坐标;
(3)将(2)中求得的抛物线在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象.请你画出这个新图象,并求出新图象与直线
有三个不同公共点时m值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com