精英家教网 > 初中数学 > 题目详情

如图,抛物线y=ax2+bx+c的顶点为A(0,1),与x轴的一个交点B的坐标为(2,0),点P在抛物线上,其横坐标为2n(0<n<1),作PC⊥x轴于C,PC交射线AB于点D
(1)求抛物线的解析式;
(2)用n的代数式表示CD、PD的长,并通过计算说明数学公式数学公式的大小关系;
(3)若将原题中“0<n<1”的条件改为“n>1”,其他条件不变,请通过计算说明(2)中结论是否仍然成立?

解:(1)如上图
∵抛物线y=ax2+bx+c的顶点为A(0,1),经过(2,0)点
∴y=ax2+1
又4a+1=0
解得a=-
∴抛物线的解析式为y=-x2+1;( 2分)

(2)设直线AB的解析式为y=kx+b
∵A(0,1)B(2,0)

解得
∴直线AB的解析式为y=-+1 3分
∵点P的坐标为(2n,1-n2),且点P在第一象限.
又∵PC⊥x轴于C,PC交射线AB于点D
∴xD=OC=2n,yD=-×2n+1=1-n,且点D在第一象限
∴CD=1-n
PD=yP-yD=n(1-n)
∵0<n<1




(3)当n>1时,P、D两点在第四象限,且P点在D点的下方(如图),
yD>yY点P的坐标为(2n,1-n2
∵xD=OC=2n
∴yD=-×2n+1=1-n
∵D点在第四象限
∴CD=yD=1-n
PD=yP-yD=n(n-1)
∵n>1


仍然成立.
分析:(1)根据题意把点A(0,1),(2,0)代入解析式求解即可得到y=-x2+1;
(2)先利用待定系数法解得直线AB的解析式为y=-+1,再根据点P的坐标为(2n,1-n2),求出CD=1-n,PD=yP-yD=n(1-n),从而得到=
(3)利用同样的方法可求得CD=yD=1-n,PD=yP-yD=n(n-1),所以代入到,得到=
点评:主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案