精英家教网 > 初中数学 > 题目详情
(2012•丹东)已知抛物线y=ax2-2ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且|OC|=3|OA|
(1)求抛物线的函数表达式;
(2)直接写出直线BC的函数表达式;
(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).
求:①s与t之间的函数关系式;
②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.
(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.
分析:(1)首先由OC、OA的数量关系确定点C的坐标,即可利用待定系数法求出抛物线的解析式.
(2)由(1)的抛物线解析式可得点B的坐标,而点C的坐标已经求得,由待定系数法求解即可.
(3)①首先要明确正方形ODEF和△OBC重合部分的形状:当点D在△OBC内部时,两者的重合部分是矩形;当点D在△OBC外部时,两者的重合部分是五边形,其面积可由正方形的面积减去△DGH的面积(G、H分别为ED、OD和线段BC的交点).在判断t的取值范围时,要注意一个“关键点”:点D位于线段BC上时.
②根据①的函数性质即可得到答案,要注意未知数的取值范围.
(4)若存在以A、M、N、P为顶点的平行四边形,那么应分:AM
.
PN或AN
.
PM两种情况,由于AM在x轴上,结合平行四边形的特点可知:无论哪种情况,点N到x轴的距离都等于点P到x轴的距离,根据这个特点可确定点M、N的坐标.
解答:解:(1)∵A(-1,0),|OC|=3|OA|
∴C(0,-3)
∵抛物线经过A(-1,0),
C(0,-3)
c=-3
(-1)2×a-2a×(-1)+c=0

a=1
c=-3

∴y=x2-2x-3.

(2)由(1)的抛物线知:点B(3,0);
设直线BC的解析式为:y=kx-3,代入B点坐标,得:
3k-3=0,解得 k=1
∴直线BC的函数表达式为y=x-3.

(3)当正方形ODEF的顶点D运动到直线BC上时,设D点的坐标为(m,-2),
根据题意得:-2=m-3,∴m=1.
①当0<t≤1时,正方形和△OBC的重合部分是矩形;
∵OO1=t,OD=2
∴S1=2t;
当1<t≤2时,正方形和△OBC的重合部分是五边形,如右图;
∵OB=OC=3,∴△OBC、△D1GH都是等腰直角三角形,∴D1G=D1H=t-1;
S2=S矩形DD1O1O-S△D1HG=2t-
1
2
×(t-1)2=-
1
2
t2+3t-
1
2

②由①知:
当0<t≤1时,S=2t的最大值为2;
当1<t≤2时,S=-
1
2
t2+3t-
1
2
=-
1
2
(t-3)2+4,由于未知数的取值范围在对称轴左侧,且抛物线的开口向下;
∴当t=2时,函数有最大值,且值为 S=-
1
2
+4=
7
2
>2.
综上,当t=2秒时,S有最大值,最大值为 
7
2


(4)由(2)知:点P(1,-2).假设存在符合条件的点M;
①当AM
.
PN时,点N、P的纵坐标相同,即点N的纵坐标为-2,代入抛物线的解析式中有:
x2-2x-3=-2,解得 x=1±
2

∴AM=NP=
2

∴M1(-
2
-1,0)、M2
2
-1,0).
②当AN
.
PM时,平行四边形的对角线PN、AM互相平分;
设M(m,0),则 N(m-2,2),代入抛物线的解析式中,有:
(m-2)2-2(m-2)-3=2,解得 m=3±
6

∴M3(3-
6
,0)、M4(3+
6
,0).
综上,存在符合条件的M点,且坐标为:
M1(-
2
-1,0)、M2
2
-1,0)、M3(3-
6
,0)、M4(3+
6
,0).
点评:该题是难度较大的二次函数综合题,包涵了:函数解析式的确定、图形面积的解法、平行四边形的性质等重要知识.(3)题是图形的动点问题,要把握住“关键点”,本着“不重不漏”的原则分段讨论.(4)题虽然难度不大,但涉及的情况较多,要结合图形分类讨论,争取做到不漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•丹东)已知:点C、A、D在同一条直线上,∠ABC=∠ADE=α,线段BD、CE交于点M.
(1)如图1,若AB=AC,AD=AE
①问线段BD与CE有怎样的数量关系?并说明理由;
②求∠BMC的大小(用α表示);
(2)如图2,若AB=BC=kAC,AD=ED=kAE,则线段BD与CE的数量关系为
BD=kCE
BD=kCE
,∠BMC=
90°-
1
2
α
90°-
1
2
α
(用α表示);
(3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接EC并延长交BD于点M.则∠BMC=
90°+
1
2
α
90°+
1
2
α
(用α表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丹东)如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD=
4
3
,④S△ODC=S四边形BEOF中,正确的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丹东)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)
(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;
(2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2:1,并直接写出C2点的坐标及△A2BC2的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丹东)暴雨过后,某地遭遇山体滑坡,武警总队派出一队武警战士前往抢险.半小时后,第二队前去支援,平均速度是第一队的1.5倍,结果两队同时到达.已知抢险队的出发地与灾区的距离为90千米,两队所行路线相同,问两队的平均速度分别是多少?

查看答案和解析>>

同步练习册答案