【题目】如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β
(1)如图,若α+β=120°,求∠MBC+∠NDC的度数;
(2)如图,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;
(3)如图,若α=β,判断BE、DF的位置关系,并说明理由.
【答案】(1)120°; (2)β﹣α=60° 理由见解析;(3)平行,理由见解析.
【解析】
(1)利用四边形的内角和求出∠ABC与∠ADC的和,利用角平分线的定义以及α+β=120°推导即可;
(2)由(1)得,∠MBC+∠NDC=α+β,利用角平分线的定义得∠CBG+∠CDG=(α+β),在△BCD中利用三角形的内角和定理得∠BDC+∠CDB =180°﹣β,在△BDG中利用三角形的内角和定理得出关于α、β的等式整理即可得出结论;
(3)延长BC交DF于H,由(1)得∠MBC+∠NDC=α+β,利用角平分线的定义得∠CBE+∠CDH=(α+β),利用三角形的外角的性质得∠CDH=β﹣∠DHB,然后代入∠CBE+∠CDH=(α+β)计算即可得出一组内错角相等.
(1)解:(1)在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,
∴∠ABC+∠ADC=360°-(α+β),
∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°
∴∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=360°-(∠ABC+∠ADC)=360°-[360°-(α+β)]=α+β,
∵α+β=120°,
∴∠MBC+∠NDC=120°;
(2)β﹣α=60°
理由:如图1,连接BD,
由(1)得,∠MBC+∠NDC=α+β,
∵BE、DF分别平分四边形的外角∠MBC和∠NDC,
∴∠CBG=∠MBC,∠CDG=∠NDC,
∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),
在△BCD中,∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,
在△BDG中, ∠GBD+∠GDB+∠BGD=180°,
∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,
∴(∠CBG+∠CDG)+(∠BDC+∠CDB)+∠BGD=180°,
∴(α+β)+180°﹣β+30°=180°,
∴β﹣α=60°,
(3)平行,
理由:如图2,延长BC交DF于H,
由(1)有,∠MBC+∠NDC=α+β,
∵BE、DF分别平分四边形的外角∠MBC和∠NDC,
∴∠CBE=∠MBC,∠CDH=∠NDC,
∴∠CBE+∠CDH=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),
∵∠BCD=∠CDH+∠DHB,
∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,
∴∠CBE+β﹣∠DHB=(α+β),
∵α=β,
∴∠CBE+β﹣∠DHB=(β+β)=β,
∴∠CBE=∠DHB,
∴BE∥DF.
科目:初中数学 来源: 题型:
【题目】将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.
(1)如图1,若∠BOD=25°,则∠AOC= °;若∠AOC=125°,则∠BOD= °;
(2)如图2,若∠BOD=50°,则∠AOC= °;若∠AOC=140°,则∠BOD= °;
(3)猜想∠AOC与∠BOD的大小关系: ;并结合图(1)说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某品牌运动鞋经销商购进A、B两种新式运动鞋,按标价售出后可获利48000元.已知购进A种运动鞋的数量是B种运动鞋数量的2倍,这两种运动鞋的进价、标价如下表所示.
款式 价格 | A | B |
进价(元/双) | 100 | 120 |
标价(元/双) | 250 | 300 |
(1)这两种运动鞋各购进多少双?
(2)如果A种运动鞋按标价9折出售,B种运动鞋按标价8折出售,那么这批运动鞋全部售出后,经销商所获利润比按标价出售少收入多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】自开展“学生每天锻炼1小时”活动后,我市某中学根据学校实际情况,决定开设A:毽子,B:篮球,C:跑步,D:跳绳四种运动项目.为了了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图统计图.请结合图中信息解答下列问题:
(1)该校本次调查中,共调查了多少名学生?
(2)请将两个统计图补充完整;
(3)在本次调查的学生中随机抽取1人,他喜欢“跑步”的概率有多大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数 y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线 x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0其中正确的是( ).
A. ①②③④ B. ①②④ C. ①③④ D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班购买一些乒乓球和乒乓球拍,了解信息如下:甲、乙两家商店出售同种品牌的乒乓球和乒乓球拍,乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折出售,该班需球拍5副,乒乓球若干盒(不少于5盒)问:
(1)当购买乒乓球x盒时,两种优惠办法各应付款多少元?(用含x的代数式表示).
(2)如果要购买15盒乒乓球,请你去办这件事,你打算去哪家商店购买?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.
(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;
(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,OC OD,OC OD ,DC 的延长线交 y 轴正半轴上点 B ,过点C 作CA BD 交 x 轴负半轴于点A .
(1)如图1,求证:OAOB
(2)如图1,连AD,作OM ∥AC交AD于点M,求证: BC 2OM
(3)如图2,点E为OC 的延长线上一点,连DE,过点D作DFDE且DF DE ,连CF 交 DO 的延长线于点G 若OG 4,求CE 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】驾驶员血液中每毫升的酒精含量大于或等于200微克即为酒驾,某研究所经实验测得:成人饮用某品牌38度白酒后血液中酒精浓度y(微克/毫升)与饮酒时间x(小时)之间函数关系如图所示(当4≤x≤10时,y与x成反比例).
(1)根据图象分别求出血液中酒精浓度上升和下降阶段y与x之间的函数表达式.
(2)问血液中酒精浓度不低于200微克/毫升的持续时间是多少小时?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com