精英家教网 > 初中数学 > 题目详情
4.在一个不透明的盒子中放有四张分别写有数字1、2、3、4的红色卡片和三张分别写有1、2、3的蓝色卡片,卡片除颜色和数字外其它完全相同.
(1)从中任意抽取一张卡片,求该卡片上写有数字1的概率;
(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数不小于22的概率(请利用树状图或列表法说明)

分析 (1)由在7张卡片中共有两张卡片写有数字1,利用概率公式求解即可求得答案;
(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与这个两位数不小于22的情况,再利用概率公式求解即可求得答案.

解答 解:(1)∵在7张卡片中共有两张卡片写有数字1,
∴从中任意抽取一张卡片,卡片上写有数字1的概率是$\frac{2}{7}$;             

(2)组成的所有两位数列表得:

1234
111213141
212223242
313233343
∵共有12种等可能的结果,这个两位数不小于22的有8种情况
∴这个两位数不小于22的概率为:$\frac{8}{12}$=$\frac{2}{3}$.

点评 此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.在△ABC中,AB=AC,∠A=60°,点D是BC边的中点,作射线DE,与边AB交于点E,射线DE绕点D顺时针旋转120°,与直线AC交于点F.
(1)依题意将图1补全;
(2)小华通过观察、实验提出猜想:在点E运动的过程中,始终有DE=DF.小华把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:由点D是BC边的中点,通过构造一边的平行线,利用全等三角形,可证DE=DF;
想法2:利用等边三角形的对称性,作点E关于线段AD的对称点P,由∠BAC与∠EDF互补,可得∠AED与∠AFD互补,由等角对等边,可证DE=DF;
想法3:由等腰三角形三线合一,可得AD是∠BAC的角平分线,由角平分线定理,构造点D到AB,AC的高,利用全等三角形,可证DE=DF….
请你参考上面的想法,帮助小华证明DE=DF(选一种方法即可);
(3)在点E运动的过程中,直接写出BE,CF,AB之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知AB是⊙O的直径,点C在⊙O上,点E在AB上,作DE⊥AB交AC的延长线于点D,过点C作⊙O的切线CF交DE于点F.
(1)求证:CF=DF;
(2)若AB=10,BE=2.8,sin∠ADE=$\frac{3}{5}$,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.为了解某校八、九年级部分学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如图的统计图表:
睡眠情况分段情况如下
组别睡眠时间x(小时)
A4.5≤x<5.5
B5.5≤x<6.5
C6.5≤x<7.5
D7.5≤x<8.5
E8.5≤x<9.5
根据图表提供的信息,回答下列问题:
(Ⅰ)直接写出统计图中a的值5%;
(Ⅱ)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.先化简,再求值:(1-$\frac{1+x}{1-x}$)÷$\frac{{x}^{2}}{{x}^{2}-1}$,再从-2≤x<2中选一个合适的整数代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形正六边形,现从中随机抽取一张,卡片上的图形是中心对称图形的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在大楼AB的正前方有一斜坡CD,已知斜坡CD长6$\sqrt{2}$米,坡角∠DCE等于45°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的顶点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.
(1)求斜坡CD的高度DE;
(2)求大楼AB的高度(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知:如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
(1)求证:AB=DC;
(2)求证:△OEF是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解方程组:$\left\{\begin{array}{l}{4{x}^{2}-{y}^{2}=0}\\{3{x}^{2}-xy+x+2y+6=0}\end{array}\right.$.

查看答案和解析>>

同步练习册答案