【题目】如图,在一块边长为a厘米的正方形纸板四角,各剪去一个边长为b(b<)厘米的正方形,利用因式分解计算当a=13.4,b=3.4时,剩余部分的面积.
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.无限小数是无理数;
B.零是整数,但不是正数,也不是负数;
C.分数包括正分数、负分数和零;
D.有理数不是正数就是负数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2003~2005年某市的财政收入情况如图所示.根据图中的信息,解答下列问题:
(1)该市2003~2005年财政收入的年平均增长率约为多少?(精确到1%)
(2)该市2006年财政收入能否达到700亿元?请说明理由.
(备用数据)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN= 时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:
(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;
(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为( )
A.y=﹣x B.y=﹣x C.y=﹣x D.y=﹣x
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D、E分别在△ABC的边BC、AC上,且AB=AC,AD=AE.
①当∠B为定值时,∠CDE为定值;
②当∠1为定值时,∠CDE为定值;
③当∠2为定值时,∠CDE为定值;
④当∠3为定值时,∠CDE为定值;
则上述结论正确的序号是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com