精英家教网 > 初中数学 > 题目详情

【题目】如图1,已知射线CBOA,∠C=OAB,

(1)求证:ABOC

(2)如图2,E、FCB上,且满足∠FOB=AOB,OE平分∠COF.

①当∠C=110°时,求∠EOB的度数.

②若平行移动AB,那么∠OBC :OFC的值是否随之发生变化?若变化,找出变

化规律;若不变,求出这个比值.

【答案】(1)见解析;(2)①35°,②∠OBC:OFC的值不发生变化OBC:OFC=1:2

【解析】试题分析:(1)由平行线的性质得到∠C+∠COA=180°,再由∠C=∠OAB得到∠OAB+∠COA=180°,根据同旁内角互补两直线平行即可得到结论

2)①先求出∠COA的度数FOB=∠AOBOE平分∠COF即可得到结论

②∠OBC:∠OFC的值不发生变化由平行线的性质可得OBC=∠BOA,∠OFC=∠FOA

FOB=∠AOB得到OFC=2OBC从而得出结论

试题解析:(1)∵CBOA, ∴∠C+∠COA=180°.

∵∠C=∠OAB,∴∠OAB+∠COA=180°,∴ABOC

2)①∠COA=180°-∠C=70°.∵∠FOB=∠AOBOE平分∠COF, ∴ ∠FOB+∠EOF= (∠AOF+∠COF)= ∠COA=35°;

②∠OBC:∠OFC的值不发生变化

CBOA,∴∠OBC=∠BOA,∠OFC=∠FOA

∵∠FOB=∠AOB,∴∠FOA=2BOA,∴∠OFC=2OBC,∴∠OBC:∠OFC=12

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在学习有理数加法时,我们利用“(+5)+(+3)=+8(-5)+(-3)=-8……”抽象归纳推出了同号两数相加,取相同的符号,并把绝对值相加的加法法则.这种推导方法叫( )

A.排除法B.归纳法C.类比法D.数形结合法

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.

(1)当∠BQD=30°时,求AP的长;

(2)证明:在运动过程中,点D是线段PQ的中点;

(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明

如图,点E在直线DF上,点B在直线AC上,若∠AGB=EHF,C=D.

求证:∠A=F.

证明:∵∠AGB=EHF

AGB=___________(对顶角相等)

∴∠EHF=DGF

DBEC____________________________________

∴∠_________=DBA________________________________

又∵∠C=D

∴∠DBA=D

DF_________________________________________

∴∠A=F__________________________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(6,0),(0,10),点B在第一象限内.

(1)写出点B的坐标,并求长方形OABC的周长;

(2)若有过点C的直线CD把长方形OABC的周长分成3:5两部分,D为直线CD与长方形的边的交点,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场家电专柜购进一批甲,乙两种电器,甲种电器共用了10 350元,乙种电器共用了9 600元,甲种电器的件数是乙种电器的1.5倍,甲种电器每件的进价比乙种电器每件的进价少90元.

(1)甲、乙两种电器各购进多少件?

(2)商场购进两种电器后,按进价提高40%后标价销售,很快全部售完,求售完这批电器商场共获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列调查方式,你认为最合适的是(

A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式

B.旅客上飞机前的安检,采用抽样调查方式

C.了解深圳市居民日平均用水量,采用全面调查方式

D.了解深圳市每天的平均用电量,采用抽样调查方式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C在线段AB上,AC=8cmCB=6cm,点MN分别是ACBC的中点.

1)求线段MN的长;

2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;

3)若C在线段AB的延长线上,且满足AC﹣BC=b cmMN分别为ACBC的中点,你能猜想MN的长度吗?并说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直线上顺次取 ABC 三点,分别以 ABBC 为边长在直线的同侧作正三角形, 作得两个正三角形的另一顶点分别为 DE

(1)如图①,连结 CDAE,求证:CDAE

(2)如图②,若 AB1BC2,求 DE 的长;

(3)如图③,将图②中的正三角形 BCE B 点作适当的旋转,连结 AE,若有 DE2BE2AE2,试求∠DEB 的度数.

查看答案和解析>>

同步练习册答案