【题目】阅读下列材料: 解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:
解:∵x﹣y=2,又∵x>1,∴y+2>1,即y>﹣1
又y<0,∴﹣1<y<0.…①
同理得:1<x<2.…②
由①+②得﹣1+1<y+x<0+2,∴x+y的取值范围是0<x+y<2.
请按照上述方法,完成下列问题:
已知关于x、y的方程组 的解都为非负数.
(1)求a的取值范围;
(2)已知2a﹣b=1,且,求a+b的取值范围;
(3)已知a﹣b=m(m是大于1的常数),且b≤1,求2a+b最大值.(用含m的代数式表示)
【答案】
(1)解:因为关于x、y的方程组 的解都为非负数,
解得: ,
可得: ,
解得:a≥2
(2)解:由2a﹣b=1,
可得: ,
可得: ,
解得:b≥3,
所以a+b≥5
(3)解: ,
所以m+b≥2,
可得: ,
可得:2﹣m≤b≤1,
同理可得:2≤a≤1+m,
所以可得:6﹣m≤2a+b≤3+2m,
最大值为3+2m
【解析】(1)先把a当作已知求出x、y的值,再根据x、y的取值范围得到关于a的一元一次不等式组,求出a的取值范围即可;(2)根据阅读材料所给的解题过程,分别求得a、b的取值范围,然后再来求a+b的取值范围;(3)根据(1)的解题过程求得a、b取值范围;结合限制性条件得出结论即可.
科目:初中数学 来源: 题型:
【题目】已知点A、B、C在同一条直线上,且AC=5cm,BC=3cm,点M、N分别是AC、BC的中点.
(1)画出符合题意的图形;
(2)依据(1)的图形,求线段MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设二次函数y=(x﹣1)2﹣2图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是( )
A.(2,0)B.(﹣2,0)C.(1,0)D.(0,﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】莫菲、隆迪、紫惠和曲代4人一起去火锅店吃火锅,4人在如图所示的四人桌前就座,其中莫菲和紫惠坐在餐桌的同侧,
(1)请用适当的方法表示出所有的不同就座方案.
(2)请问隆迪恰好坐在靠近过道一侧的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,△ABC中,D是BC边上一点,则△BD与△ADC有一个相同的高,它们的面积之比等于相应的底之比,记为= (△ABD、△ADC的面积分别用S△ABD、S△ADC表示)。现有BD=BC,则S△ABD:S△ADC=
(2)如图2,△ABC中,E、F分别是BC、AC边上一点,且有BE:EC=1:2,AF: FC=1:1,AE与BF相交于点G、现作EH ∥BF交AC于点H、依次求FH :HC、AG: GE、BG:GF的值
(3)如图3,△ABC中,点P在边AB上,点M、N在边AC上,且有AP=PB,AM=MN=NC,BM、BW与CP分别相交于点R、Q.,现已知△ABC的面积为1,求△BRQ的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=3,OB=5,点D为y轴上一点,其坐标为(0,1),点P从点A出发以每秒1个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.
(1)当点P经过点C时,求直线DP的函数解析式;
(2)①求△OPD的面积S关于t的函数解析式;
②当点D关于OP的对称点落在x轴上时,求点P的坐标.
(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列选项中属于必然事件的是( )
A.从只装有黑球的袋子摸出一个白球
B.不在同一直线上的三个点确定一个圆
C.抛掷一枚硬币,第一次正面朝上,第二次反面朝上
D.每年10月1日是星期五
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com