| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 由折叠的性质和等腰三角形的性质可得,∠PDE=∠PED=∠BPE=∠APB,由平行线的性质,可得∠APB=∠CBP,进而得出结论.
解答 解:由折叠知,∠BPE=∠APB,AP=PE,
∵点P是AD中点,
∴AP=DP,
∴PD=PE,
∴∠PDE=∠PED,
∵2∠PDE+∠DPE=180°,2∠APB+∠DPE=180°,
∴∠PDE=∠APB,
∵AD∥BC,
∴∠APB=∠CBP,
∴∠PDE=∠PED=∠BPE=∠APB=∠CBP,
故选:D.
点评 本题属于折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决问题的关键是由等腰三角形的性质得出∠PDE=∠APB.
科目:初中数学 来源: 题型:选择题
| A. | 甲的成绩比乙的成绩稳定 | B. | 乙的成绩比甲的成绩稳定 | ||
| C. | 甲、乙两人的成绩一样稳定 | D. | 无法确定甲、乙的成绩谁更稳定 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 时间x(天) | 每台空调的成本P(元) |
| 0<x≤5 | P=400 |
| 5<x≤12 | P=40x+200 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | y1>y2>0 | B. | y2>y1>0 | C. | 0>y1>y2 | D. | 0>y2>y1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{16}{3}$ | C. | 6 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com