分析:若二次函数y=x2+2x-a的图象与x轴没有交点,则一元二次方程0=x2+2x-a的判别式小于0,从而求得a的取值范围.
解答:解:∵二次函数y=x2+2x-a的图象与x轴没有交点,
∴令y=0时,x2+2x-a=0的判别式△<0,
即b2-4ac=4+4a<0,
解得a<-1,
故答案为:a<-1.
点评:本题考查了抛物线与x轴的交点问题,注:当抛物线y=ax2+bx+c与轴有两个交点时,一元二次方程ax2+bx+c=0有两个不等的实数根即△>0;当抛物线y=ax2+bx+c与轴有一个交点时,一元二次方程ax2+bx+c=0有两个相等的实数根即△=0;当抛物线y=ax2+bx+c与轴无交点时,一元二次方程ax2+bx+c=0无实数根即△<0.