精英家教网 > 初中数学 > 题目详情
如图,已知AB是半圆O的直径,AP为过点A的半圆的切线.在
AB
上任取一点C(点C与A、B不重合),过点C作半圆的切线CD交AP于点D;过点C作CE⊥AB,垂足为E.连接BD,交CE于点F.
(1)当点C为
AB
的中点时(如图1),求证:CF=EF;
(2)当点C不是
AB
的中点时(如图2),试判断CF与EF的相等关系是否保持不变,并证明你的结论.
证明:(1)∵DA是切线,AB为直径,
∴DA⊥AB.
∵点C是
AB
的中点,且CE⊥AB,
∴点E为半圆的圆心.
又∵DC是切线,
∴DC⊥EC.
又∵CE⊥AB,
∴四边形DAEC是矩形.
∴CDAO,CD=AD.
EF
AD
=
BE
AB
=
1
2

即EF=
1
2
AD=
1
2
EC.
∴F为EC的中点,CF=EF.

(2)CF=EF,
证明:连接BC,并延长BC交AP于G点,连接AC,如图所示:
∵AD、DC是半圆O的切线,∴DC=DA,
∴∠DAC=∠DCA.
∵AB是直径,
∴∠ACB=90°,
∴∠ACG=90°.
∴∠DGC+∠DAC=∠DCA+∠DCG=90°.
∴∠DGC=∠DCG.
∴在△GDC中,GD=DC.
∵DC=DA,
∴GD=DA.
∵AP是半圆O的切线,
∴AP⊥AB,又CE⊥AB.
∴CEAP.
CF
GD
=
BE
AB
=
EF
AD

∵GD=AD,
∴CF=EF.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.
(1)求证:CA是圆的切线;
(2)若点E是BC上一点,已知AE=6,∠ABC=25°,∠AEC=50°,求圆的直径.(精确到0.1)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,等边△ABC的面积为S,⊙O是它的外接圆,点P是
BC
的中点.
(1)试判断过点C所作⊙O的切线与直线AB是否相交,并证明你的结论;
(2)设直线CP与AB相交于点D,过点B作BE⊥CD,垂足为E,证明BE是⊙O的切线,并求△BDE的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AC是⊙O的直径,AB和⊙O相交于E,BC和⊙O相切于C,D在BC上,DE是⊙O的切线,E是切点,
求证:(1)ODAB;
(2)2DE2=BE•OD;
(3)设BE=2,∠ODE=a,则cos2a=
1
OD

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.
求证:(1)BC平分∠PBD;
(2)BC2=AB•BD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

用一把带有刻度的直角尺,
①可以画出两条平行的直线a与b,如图(4)
②可以画出∠AOB的平分线OP,如图(2)
③可以检验工件的凹面是否成半圆,如图(3)
④可以量出一个圆的半径,如图(4)

上述四个方法中,正确的个数是(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD,垂足为C,若AB=2cm,半圆O的半径为2cm,则BC的长为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠BAC=90度.BM平分∠ABC交AC于M,以A为圆心,AM为半径作⊙A交BM于N,AN的延长线交BC于D,直线AB交⊙A于P,K两点,作MT⊥BC于T.
(1)求证:AK=MT;
(2)求证:AD⊥BC;
(3)当AK=BD时,求证:
BN
BP
=
AC
BM

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在12×7的网格图中(每个小正方形的边长均为1个单位).⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B外切,那么⊙A位置需向右平移多少个单位(  )
A.2B.8C.2或8D.2或4或6或8

查看答案和解析>>

同步练习册答案