【题目】如图,已知,,,且、、三点共线,与交于点.
(1)求证:;
(2)若,,则 .
【答案】(1)见详解(2)2
【解析】
(1)如图1中,欲证明需先证明AF=BE,只要证明△ACF≌△BCE即可.
(2)如图1中,由△ACF≌△BCE,推出∠AFC=∠CEB,由∠CFE=∠CEF=45°,推出∠AFC=∠CEB=135°推出∠AEB=90°,由AC=BC=,推出BC=AC=,在Rt△AEB中,AE=推出EF=2,由此即可解决问题.
证明:如图中,∵∠ACB=∠FCE=90°∴∠ACF=∠BCE
在△ACF和BCE中,
∴△ACF≌△BCE(SAS).
∴ AF=BE,
∴∠CAF=∠CBE,
∵∠CAE+∠EAB+∠ABC=90°
∴∠EAB+∠ABC+∠CBE=90°
∴∠AEB=90
在Rt△AEB中,
BE+AE=AB
∴AF+AE=AB,
(2) ∵△ACF≌△BCE
∴∠AFC=∠CEB
∵,
∵∠CFE=∠CEF=45°
∴∠AFC=∠CEB=135°,
∴∠AEB=90°,
∵AC=BC=
∴BC=AC=,
∵BE=3 =AF
在Rt△AEB中,AE=
∴EF=2
故答案为:2
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程,
(1)求证:该一元二次方程总有两个实数根;
(2)若该方程只有一个小于4的根,求m的取值范围;
(3)若x1,x2为方程的两个根,且n=x12+x22﹣4,判断动点所形成的数图象是否经过点,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里有5个小球,分别标有数字﹣3,﹣2,﹣1,﹣,﹣,这些小球除所标的数不同外其余都相同,先从盒子随机摸出1个球,记下所标的数,再从剩下的球中随机摸出1个球,记下所标的数.
(1)用画树状图或列表的方法求两次摸出的球所标的数之积不大于1的概率.
(2)若以第一次摸出球上的数字为横坐标,第二次摸出球上的数字为纵坐标确定一点,直接写出该点在双曲线y=上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是由边长为1的小正方形组成的方格图.
(1)请在方格图中建立平面直角坐标系,使点的坐标为(3,3),点的坐标为(1,0);
(2)点的坐标为(4,1),在图中找到点,顺次连接点、、,并作出关于轴对称的图形;
(3)中边边上的高为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;
(2)当降价多少元时,每星期的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中,的顶点均在格点上,点A的坐标为,点B的坐标为,点C的坐标为.
(1)以点C为旋转中心,将旋转后得到,请画出;
(2)平移,使点A的对应点的坐标为,请画出;
(3)若将绕点P旋转可得到,则点P的坐标为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)是一个长为2m,宽为2n的长方形,沿图中虚线剪成四个均匀的小长方形,然后按图(2)形状拼成一个正方形.
(1)你认为图(2)中的阴影部分的正方形的边长等于多少?
(2)观察图(2),你能写出下列三个代数式之间的等量关系吗?代数式:,,;
(3)已知:,,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠ABC+∠ADC=120°,将一透明三角板60°角的顶点落在点A上,并绕着点A旋转,三角板的两边分别交BC、CD于点E、F.
(1)如图1,求∠BAD的度数;
(2)如图2,求证:BE+DF=AB;
(3)如图3,在(2)的条件下,取AB中点G,作等边△EGH,连接AH,延长GH刚好与平行四边形ABCD交于点D,若AH⊥AB,△EGH的面积为.求DH的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com