【题目】如图,正方形ABCD,点P是对角线AC上一点,连结BP,过P作PQ⊥BP,PQ交CD于Q,若AP=,CQ=3,则四边形PBCQ的面积为_______.
【答案】16
【解析】如图,作PE⊥BC于E,PF⊥CD于F.延长FP交AB于点G,只要证明△PEB≌△PFQ即可解决问题.
如图,作PE⊥BC于E,PF⊥CD于F.延长FP交AB于点G,
∵四边形ABCD是正方形,
∴∠BCD=90°,
∵AC是对角线,
∴PE=PF,
∴四边形PECF是正方形,
∴∠EPF=90°,
∵PQ⊥BP,
∴∠BPE+∠EPQ=∠FPQ+∠QPE=90°,
∴∠BPE=∠∠FPQ,
∴△PEB≌△PFQ,
∴S四边形BCQP=S正方形PECF.
∵AP=,
∴BE=PG=1
由△PEB≌△PFQ知FQ=BE=1,
∴CF=CQ+FQ=3+1=4,
∴S四边形BCQP=S正方形PECF=4×4=16.
故答案为16.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,点D,E分别在AC,BC上,且CD·BC=AC·CE,以E为圆心,DE长为半径作圆,⊙E经过点B,与AB,BC分别交于点F,G.
(1)求证:AC是⊙E的切线;
(2)若AF=4,CG=5,
①求⊙E的半径;
②若Rt△ABC的内切圆圆心为I,则IE= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,中,,点为边上一点,于点,点为中点,点为中点,的延长线交于点,≌.
(1)求证:;
(2)求的大小;
(3)如图②,过点作交的延长线于点,求证:四边形为矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在8×8的正方形网格中,每个小正方形的顶点称为格点,点A、B、C均在格点上,按下述要求画图并标注相关字母.
(1)画线段AB,画射线BC,画直线AC;
(2)过点B画线段BD⊥AC,垂足为点D;
(3)取线段AB的中点E,过点E画BD的平行线,交AC于点F.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:数学活动课上老师出示问题,如图1,有边长为a的正方形纸片一张,三边长分别为a、b、c的全等直角三角形纸片两张,且.请你用这三张纸片拼出一个图案,并将这个图案的某部分进行旋转或平移变换之后,提出一个问题(可以添加其他条件,例如可以给出a、b的值等等).
解决问题:
下面是两个学习小组拼出图案后提出的问题,请你解决他们提出的问题.
(1)“爱心”小组提出的问题是:如图2,将△DFC绕点F逆时针旋转,使点D恰好落在AD边上的点D′处,猜想此时四边形AEFD′是什么特殊四边形,并加以证明;
(2)“希望”小组提出的问题是:如图3,点M为BE中点,将△DCF向左平移至DF恰好过点M时停止,且补充条件a=6,b=2,求△DCF平移的距离.
自主创新:
(3)请你仿照上述小组的同学,在下面图4的空白处用实线画出你拼出的图案,用虚线画出变换图,并在横线处写出你提出的问题.(不必解答)
你提出的问题:________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用若干大小相同的小立方体块搭一个几何体,使得从正面和上面看到这个几何体的形状图如图所示,其中从上面看到的形状图的小正方形中的字母表示该位置小立方体的个数.请解答:
(1)表示几?的最大值是多少?
(2)这个几何体最少是用多少个小立方体搭成的?最多呢?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com