精英家教网 > 初中数学 > 题目详情
19.已知点P(a-2,2a+8),分别根据下列条件求出点P的坐标.
(1)点P在x轴上;
(2)点P在y轴上;
(3)点P到x轴、y轴的距离相等.

分析 (1)根据x轴上点的纵坐标为0列方程求出a,再求解即可;
(2)根据y轴上点的横坐标为0列方程求出a的值,再求解即可;
(3)根据点到x轴、y轴的距离,点的横坐标与纵坐标相等或互为相反数列出方程求出a的值,再求解即可.

解答 解:(1)∵点P(a-2,2a+8)在x轴上,
∴2a+8=0,
解得a=-4,
所以,a-2=-4-2=-6,
所以,点P(-6,0);

(2)∵点P(a-2,2a+8)在y轴上,
∴a-2=0,
解得a=2,
所以,2a+8=2×2+8=12,
所以,点P(0,12);

(3)∵点P到x轴、y轴的距离相等,
∴a-2=2a+8或a-2+2a+8=0,
解得a=-10或a=-2,
当a=-10时,a-2=-10-2=-12,
2a+8=2×(-10)+8=-12,
所以,点P(-12,-12),
当a=-2时,a-2=-2-2=-4,
2a+8=2×(-2)+8=4,
点P(-4,4),
综上所述,点P的坐标为(-12,-12)或(-4,4).

点评 本题考查了点的坐标,熟记坐标轴上点的坐标特征是解题的关键,难点在于(3)分两种情况.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,点E为AB边上一点.若BC=8$\sqrt{2}$,DE=5,则线段BE=7或1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,点E在BC的延长线上,下列条件中,
①∠2=∠5;②∠3=∠4;③∠ACE+∠E=180°;④∠B=∠3.
能判断AC∥DE的有(  )
A.①②B.①③C.②④D.③④

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.规定用符号[m]表示一个实数m的整数部分,例如:[$\frac{4}{5}$]=0,[3.14]=3,按此规律[$\sqrt{20}$-1]的值为3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,△ABD是等腰直角三角形,点C是BD延长线上一点,F在AC上,AD=AF,E为△ADC内一点,连接AE,BE,AE平分∠CAD,AE⊥BE.
(1)若∠EBD=15°,求∠ADF;
(2)求证:BE-AE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列条件:①△ABC的一个外角与其相邻内角等;②∠A=$\frac{1}{2}$∠B=$\frac{1}{3}$∠C;③AC:BC:AB=1:$\sqrt{3}$:2;④AC=
n2-1,BC=2n,AB=n2+1(n>1).能判定△ABC是直角三角形的条件有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知Rt△ABC,正方形ABGF,正方形ACDE,BAE共线,FD交AE于I,GE交AF于H,求证:AH=AI.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)计算:$\sqrt{18}$+$\sqrt{12}$-$\sqrt{27}$-$\sqrt{8}$;
(2)计算:$\sqrt{1\frac{2}{3}}$+$\sqrt{2}$×$\sqrt{1\frac{1}{5}}$-($\sqrt{3}$+1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)计算:(-$\sqrt{3}$)2-$\sqrt{(-4)^{2}}$-$\root{3}{-8}$-|1-$\sqrt{2}$|
(2)求x的值:64(x+1)3-27=0.

查看答案和解析>>

同步练习册答案