精英家教网 > 初中数学 > 题目详情
如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=30°,∠D=55°,求∠ACD的度数.
考点:三角形内角和定理,三角形的外角性质
专题:
分析:根据三角形外角与内角的关系及三角形内角和定理解答.
解答:解:∵DF⊥AB
∴∠AFE=90°,
∴∠AEF=90°-∠A=90°-30°=60°,
∴∠CED=∠AEF=60°,
∴∠ACD=180°-∠CED-∠D=180°-60°-55°=65°.
答:∠ACD的度数为65°.
点评:此题考查三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

由两个相同的正方体和一个圆锥体组成一个立体图形,如果从上向下看到的平面图形是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a>0)的图象与x轴的一个交点为A(1,0),
另一个交点为B,与y轴的交点为C(0,-2).
(1)b=
 
,点B的坐标为(
 
 
);(均用含a的代数式表示)
(2)若a<2,试证明二次函数图象的顶点一定在第三象限;
(3)若a=1,点P是抛物线在x轴下方的一个动点(不与C重合),连结PB,PC,设所得△PBC的面积为S,试求S的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是
 
三角形;
(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;
(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.
(4)若抛物线y=-x2+4mx-8m+4与直线y=3交点的横坐标均为整数,是否存在整数m的值使这条抛物线的“抛物线三角形”有一边上的中线长恰好等于这边的长?若存在,直接写出m的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线,y=x2+bx+c经过A,B两点,抛物线的顶点为D.
(1)求抛物线的解析式;
(2)点E是Rt△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)若在抛物线的对称轴上恰好存在唯一的点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;请确定此时点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图1,在平面直角坐标系中,⊙P的圆心P(3,0),半径为5,⊙P与抛物线y=ax2+bx+c
(a≠0)的交点A、B、C刚好落在坐标轴上.
(1)求抛物线的解析式;
(2)点D为抛物线的顶点,经过C、D的直线是否与⊙P相切?若相切,请证明;若不相切,请说明理由;
(3)如图2,点F是点C关于对称轴PD的对称点,若直线AF交y轴于点K,点G为直线PD上的一动点,则x轴上是否存在一点H,使C、G、H、K四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

当x取哪些整数值时,不等式5x-9<3x-3和1-2x≤x-1都成立.

查看答案和解析>>

科目:初中数学 来源: 题型:

模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.

求证:△BEC≌△CDA.
模型应用:
(1)已知直线l1:y=
4
3
x+4与y轴交与A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式.
(2)如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,且是直线y=2x-6上的一点,若△APD是不以A为直角顶点的等腰Rt△,请直接写出点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,∠C=90°,AC=
2
,D是BC的中点,且∠ADC=45°,求△ABC的周长.(结果保留根号)

查看答案和解析>>

同步练习册答案