【题目】已知:数轴上A、B两点表示的有理数分别为a、b,且(a﹣1)2+|b+2|=0,
(1)求(a+b)2015的值.
(2)数轴上的点C与A、B两点的距离的和为7,求点C在数轴上表示的数c的值.
【答案】(1)﹣1;(2)c的值是﹣4或3.见解析
【解析】
试题分析:(1)根据(a﹣1)2+|b+2|=0,可以求得a、b的值,从而可以得到(a+b)2015的值;
(2)由第(1)问中求得的a的值和数轴上的点C与A、B两点的距离的和为7,可知点C可能在点B的左侧或点C可能在点A的右侧两种情况,然后进行计算即可解答本题.
解:(1)∵(a﹣1)2+|b+2|=0,
∴a﹣1=0,b+2=0,
解得a=1,b=﹣2,
∴(a+b)2015=(1﹣2)2015=(﹣1)2015=﹣1;
(2)∵a=1,b=﹣2,数轴上A、B两点表示的有理数分别为a、b,数轴上的点C与A、B两点的距离的和为7,
∴点C可能在点B的左侧或点C可能在点A的右侧,
当点C在点B的左侧时,1﹣c+﹣2﹣c=7,得c=﹣4,
当点C在点A的右侧时,c﹣1+c﹣(﹣2)=7,得c=3,
即点C在数轴上表示的数c的值是﹣4或3.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且DA=DC,链接AC,AD,延长AD交BM地点E.
(1)求证:△ACD是等边三角形.
(2)连接OE,若DE=2,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知下列实数:①﹣,②,③3.14,④,⑤0,⑥﹣1.23,⑦,⑧1.232 232 223…(两个“3”之间依次多一个“2”),⑨﹣.其中无理数有: ;整数有: ;负分数有: (只需填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l1:y=﹣与直线l2:y=kx﹣交于x轴上的同一个点A,直线l1与y轴交于点B,直线l2与y轴的交点为C.
(1)求k的值,并作出直线l2图象;
(2)若点P是线段AB上的点且△ACP的面积为15,求点P的坐标;
(3)若点M、N分别是x轴上、线段AC上的动点(点M不与点O重合),是否存在点M、N,使得△ANM≌△AOC?若存在,请求出N点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=90°,AB=AC,在△ABC的外部作∠ACM,使得∠ACM=∠ABC,点D是直线BC上的动点,过点D作直线CM的垂线,垂足为E,交直线AC于F.
(1)如图1所示,当点D与点B重合时,延长BA,CM交点N,证明:DF=2EC;
(2)当点D在直线BC上运动时,DF和EC是否始终保持上述数量关系呢?请你在图2中画出点D运动到CB延长线上某一点时的图形,并证明此时DF与EC的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,AB=AC,∠A=36°,两条角平分线BE、CD相交于点O,则图中等腰三角形有( )
A.3个 B.5个 C.7个 D.8个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点P的坐标为(0,2),直线y=与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为( )
A.3 B.4 C.5 D.6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com