精英家教网 > 初中数学 > 题目详情
(2013•潍坊)如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F,现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1,若△E1FA1∽△E1BF,则AD=
16
5
16
5
分析:利用勾股定理列式求出AC,设AD=2x,得到AE=DE=DE1=A1E1=x,然后求出BE1,再利用相似三角形对应边成比例列式求出DF,然后利用勾股定理列式求出E1F,然后根据相似三角形对应边成比例列式求解得到x的值,从而可得AD的值.
解答:解:∵∠ACB=90°,AB=10,BC=6,
∴AC=
AB2-BC2
=
102-62
=8,
设AD=2x,
∵点E为AD的中点,将△ADF沿DF折叠,点A对应点记为A1,点E的对应点为E1
∴AE=DE=DE1=A1E1=x,
∵DF⊥AB,∠ACB=90°,∠A=∠A,
∴△ABC∽△AFD,
AD
AC
=
DF
BC

2x
8
=
DF
6

解得DF=
3
2
x,
在Rt△DE1F中,E1F=
DF2+DE12
=
(
3x
2
)
2
+x2
=
13
x
2

又∵BE1=AB-AE1=10-3x,△E1FA1∽△E1BF,
E1F
A1E1
=
BE1
E1F

∴E1F2=A1E1•BE1
即(
13
x
2
2=x(10-3x),
解得x=
8
5

∴AD的长为2×
8
5
=
16
5

故答案为:
16
5
点评:本题考查了相似三角形的性质,主要利用了翻折变换的性质,勾股定理,相似三角形对应边成比例,综合题,熟记性质并准确识图是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•潍坊)如图是常用的一种圆顶螺杆,它的俯视图正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•潍坊)如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•潍坊)如图,四边形ABCD是平行四边形,以对角线BD为直径作⊙O,分别与BC,AD相交于点E,F.
(1)求证:四边形BEDF为矩形;
(2)BD2=BE•BC,试判断直线CD与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•潍坊)如图,抛物线y=ax2+bx+c关于直线x=1对称,与坐标轴交与A,B,C三点,且AB=4,点D(2,
32
)在抛物线上,直线l是一次函数y=kx-2(k≠0)的图象,点O是坐标原点.
(1)求抛物线的解析式;
(2)若直线l平分四边形OBDC的面积,求k的值;
(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线l交于M,N两点,问在y轴正半轴上是否存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案