精英家教网 > 初中数学 > 题目详情

如图,AC⊥BC,AD=BD,BC=3,AC=4,则CD=________.


分析:先利用勾股定理求出AB的长,再根据直角三角形斜边上的中线等于斜边的一半的性质解答.
解答:∵AC⊥BC,BC=3,AC=4,
∴AB===5,
∵AD=BD,
∴CD是斜边AB上的中线,
∴CD=AB=×5=
故答案为:
点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,熟记性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F,那么,CE=DF吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,AC=BC,AD=BD,下列结论中不正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AC⊥BC,DE是AB的垂直平分线,∠CAE=30°,则∠B=
30
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AC⊥BC,AD=BD,为了使图中的△BCD是等边三角形,再增加一个条件可以是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图:AC⊥BC,CD⊥AB,则点B到AC的距离是线段
BC
BC
的长.

查看答案和解析>>

同步练习册答案