【题目】我县大力扶持和发展养鸡事业,A,B,C三家养鸡场之间的位置关系如图1所示,已知B养鸡场在A养鸡场的正东方向50公里处,C养鸡场在A养鸡场的正北方向50公里处,A养鸡场有1万只鸡,B养鸡场的养殖量是这三角养殖场的总养殖量的50%,C养鸡场养了三种鸡,王芳同学将各养鸡场的养殖量绘制成如图2所示的不完整的条形统计图,将C养鸡场各种鸡的养殖量绘制成如图3所示的扇形统计图.
(1)补全图2中的条形统计图;
(2)求乌骨鸡的数量及三黄鸡所对的扇形的圆心角的度数;
(3)政府部门决定在B,C的中点建设一座货运中转中心E,以解决三角养鸡场的鸡蛋输送问题,已知A,B,C三家养鸡场的每只鸡的年平均产蛋量为1箱,当运送一箱鸡蛋每公里的费用都为0.5元时,求从A,B,C三个养鸡场运输鸡蛋到货运中转中心E一年的总费用为多少元?(提示: =1.4)
【答案】(1)补全条形统计图见解析;
(2)海兰褐鸡的数量是1600只,海兰白鸡所对的扇形的圆心角的度数是126°;
(3)从A,B,C三个养鸡场运输鸡蛋到货运中转中心E一年的总费用为700000元.
【解析】试题分析:(1)求出总数减去A,B两个养鸡场的鸡数即可得到结果;
(2)总数乘以海兰褐鸡所占的百分比即可得到海兰褐鸡的数量,360°乘以海兰白鸡所占的百分比即可得到海兰白鸡所对的扇形的圆心角的度数;
(3)要计较运费,首先要求出AE,BE,CE的长,然后求得结果.
试题解析:
(1)C养鸡场的鸡有2÷50%﹣1﹣2=1万只;如图补全图2中的条形统计图,
(2)40000×(1﹣35%﹣25%)=1600只;360°×35%=126°,
答:海兰褐鸡的数量是1600只,海兰白鸡所对的扇形的圆心角的度数是126°;
(3)在Rt△ABC中,AB=AC=50,E是BC的中点,
∴AE=CE=BE=25,
∴40000×1×0.5×25=700000元,
答:从A,B,C三个养鸡场运输鸡蛋到货运中转中心E一年的总费用为700000元.
科目:初中数学 来源: 题型:
【题目】我们平常用的是十进制,如:1967=1×103+9×102+6×101+7,表示十进制的数要用10个数码:0,1,2,3,4,5,6,7,8,9.在计算机中用的是二进制,只有两个数码:0,1.如:二进制中111=1×22+1×21+1相当于十进制中的7,又如:11011=1×24+1×23+0×22+1×21+1相当于十进制中的27.那么二进制中的1011相当于十进制中的( )
A. 9B. 10C. 11D. 12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品共用了160元.
(1)求A,B两种商品每件多少元?
(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如,图中的三角形ABC是格点三角形,其中S=2,N=0,L=6;图中格点多边形DEFGHI所对应的S,N,L分别是 _.经探究发现,任意格点多边形的面积S可表示为S=aN+bL+c,其中a,b,c为常数,则当N=5,L=14时,S= .(用数值作答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直径坐标系中,反比例函数y=(x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=.
(1)求点D的横坐标(用含m的式子表示);
(2)求反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)(﹣3a2b3)2(﹣a3b2)5÷a2b4;
(2)( )2012×(﹣1.5)2013÷(﹣1)2014;
(3)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y;
(4)(5x+7y﹣3)(5x﹣7y+3);
(5)(a+2b﹣c)2;
(6)(x+2y)2(x﹣2y)2 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com