【题目】小明和哥哥在环形跑道上练习长跑.他们从同一起点沿相反方向同时出发,每隔25秒钟相遇一次.现在,他们从同一起跑点沿相同方向同时出发,经过25分钟哥哥追上了小明,并且比小明多跑了20圈,求:
(1)哥哥速度是小明速度的多少倍?
(2)哥哥追上小明时,小明跑了多少圈?
【答案】(1)哥哥速度是小明速度的2倍;(2)20圈.
【解析】(1)由“他们从同一起点沿相反方向同时出发,每隔25秒钟相遇一次”得到等量关系:哥哥所跑路程+小明所跑路程=环形跑道的周长;由“经过25分钟哥哥追上小明,并且比小明多跑了20圈”,知经过分钟哥哥追上小明,并且比小明多跑了1圈,得到等量关系:哥哥所跑路程-小明所跑路程=环形跑道的周长,据此列出方程组,求出问题的解.
(2)由(1)中求出的哥哥的速度与小明的速度的比为2:1,可知在时间相同时,他们所行的路程比也为2:1.如果设小明跑了x圈,那么哥哥跑了2x圈.根据哥哥比小明多跑了20圈列式解答即可.
解:设哥哥的速度是V1米/秒,小明的速度是V2米/秒.环形跑道的周长为s米.
(1)由题意,有,
整理得,4v2=2v1,
所以,V1=2V2.
答:哥哥速度是小明速度的2倍.
(2)设小明跑了x圈,那么哥哥跑了2x圈.
根据题意,得2x﹣x=20,
解得,x=20.
故经过了25分钟小明跑了20圈.
“点睛”本题考查分式方程、一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题要注意追及问题和相遇问题不同的求解方法及时间相同,路程比等于速度比.
科目:初中数学 来源: 题型:
【题目】如图,已知AB是一条直线,∠1=∠2,∠3=∠4,∠AOF=90°.
(1)∠AOC的补角是_____;
(2)_______是∠AOC的余角;
(3)∠DOC的余角是_______;
(4)∠COF的补角是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】1纳米=0.000 000 001米,则2.5纳米应表示为( )米.
A.2.5×10﹣8
B.2.5×10﹣9
C.2.5×10﹣10
D.2.5×109
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016山东省泰安市第11题)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)
选修课 A B C D E F
人数 40 60 100
根据图表提供的信息,下列结论错误的是( )
A.这次被调查的学生人数为400人
B.扇形统计图中E部分扇形的圆心角为72°
C.被调查的学生中喜欢选修课E、F的人数分别为80,70
D.喜欢选修课C的人数最少
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com