【题目】如图所示,经过B(2,0)、C(6,0)两点的⊙H与y轴的负半轴相切于点A,双曲线y= 经过圆心H,则反比例函数的解析式为________.
【答案】y=﹣
【解析】
过H作HE⊥BC于点E,连接BH,AH,如图,先求出BC的长,再根据垂径定理求出BE的长,OE的长,根据切线的性质可得AH=4,继而可得BH长,在Rt△BEH中,利用勾股定理可求得HE的长,从而可得H点坐标为(4,-2),由y=经过圆心H,利用待定系数法即可求得答案.
过H作HE⊥BC于点E,连接BH,AH,如图,
∵B(2,0),C(6,0),
∴BC=4,
∴BE=BC=2,
∴OE=OB+BE=2+2=4,
又 ⊙H与y轴切于点A,
∴AH⊥y轴,
∴AH=OE=4,
∴BH=4,
在Rt△BEH中,BE=2,BH=4,
∴HE==2,
∴H点坐标为(4,-2),
∵y=经过圆心H,
∴k=-8,
∴反比例函数的解析式为y=﹣,
故答案为:y=﹣.
科目:初中数学 来源: 题型:
【题目】如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;
②推断:的值为 :
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
(3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】基本事实:“若ab=0,则a=0或b=0”.一元二次方程x2-x-2=0可通过因式分解化为(x-2)(x+1)=0,由基本事实得x-2=0或x+1=0,即方程的解为x=2或x=-1.
(1)、试利用上述基本事实,解方程:2x2-x=0:
(2)、若(x2+y2)(x2+y2-1)-2=0,求x2+y2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形;
(2)若∠BAC=30°,AC=8,求菱形OCED的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表8.
请根据图表中的信息,解答下列问题:
(1)表中的a=______,b=______,中位数落在________组,将频数分布直方图补全;
(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?
(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出2人向全校同学作读书心得报告,请用画树状图或列表法求抽取的2名学生刚好是1名男生和1名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,△ADF绕着点A顺时旋转90°得到△ABE,若AF=4,AB=7.
(1)求DE的长度;
(2)指出BE与DF的关系如何?并说明由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰RtABC中,,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是( )
A. B. 2 C. D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数(k≠0)的图象经过圆心P,则k=________________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为解决停车难的问题,在一段长56米的路段上开辟停车位,如图,每个车位是长为5米、宽为2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出________个这样的停车位.(参考数据:≈1.4)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com