精英家教网 > 初中数学 > 题目详情
18.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.
(1)若点B的坐标是(-4,0),请在图中画出△AEF,并写出点E、F的坐标.
(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.

分析 (1)△AOB绕点A逆时针旋转90°后得到△AEF,所以AO⊥AE,AB⊥AF,BO⊥EF,AO=AE,AB=AF,BO=EF,据此在图中画出△AEF,并写出点E、F的坐标即可.
(2)根据点F落在x轴的上方,可得EF<AO;然后根据EF=OB,判断出OB<3,即可求出一个符合条件的点B的坐标是多少.

解答 解:(1)∵△AOB绕点A逆时针旋转90°后得到△AEF,
∴AO⊥AE,AB⊥AF,BO⊥EF,AO=AE,AB=AF,BO=EF,
∴△AEF在图中表示为:

∵AO⊥AE,AO=AE,
∴点E的坐标是(3,3),
∵EF=OB=4,
∴点F的坐标是(3,-1).

(2)∵点F落在x轴的上方,
∴EF<AO,
又∵EF=OB,
∴OB<AO,AO=3,
∴OB<3,
∴一个符合条件的点B的坐标是(-2,0).

点评 此题主要考查了作图-旋转变换问题,解答此题的关键是要熟练掌握旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,在△ABC中,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.
(1)请你判断FE和FD之间的数量关系,并说明理由;
(2)求证:AE+CD=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.等边△ABC的边长为1,它的一边AC在MN上,且顶点A与M重合.现将等边△ABC在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.
(1)请在所给的图中,画出顶点A在等边△ABC整个翻滚过程中所经过的路线图;
(2)求等边△ABC在整个翻滚过程中顶点A所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.快、慢两车分别从相距480km路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1h,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路y km与所用时间x h之间的函数图象如图,请结合图象信息解答下列问题:
(1)直接写出慢车的行驶速度和a的值;
(2)求快车的速度和B点坐标;
(3)快车与慢车第一次相遇时,距离甲地的路程是多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.定义:长宽比为$\sqrt{n}$:1(n为正整数)的矩形称为$\sqrt{n}$矩形.
下面,我们通过折叠的方式折出一个$\sqrt{2}$矩形,如图①所示.
操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.
操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.
则四边形BCEF为$\sqrt{2}$矩形.
证明:设正方形ABCD的边长为1,则BD=$\sqrt{{1}^{2}{+1}^{2}}$=$\sqrt{2}$.
由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形.
∴∠A=∠BFE.
∴EF∥AD.
∴$\frac{BG}{BD}$=$\frac{BF}{AB}$,即$\frac{1}{\sqrt{2}}$=$\frac{BF}{1}$.
∴BF=$\frac{1}{\sqrt{2}}$.
∴BC:BF=1:$\frac{1}{\sqrt{2}}$=$\sqrt{2}$:1.
∴四边形BCEF为$\sqrt{2}$矩形.
阅读以上内容,回答下列问题:
(1)在图①中,所有与CH相等的线段是GH、DG,tan∠HBC的值是$\sqrt{2}$-1;
(2)已知四边形BCEF为$\sqrt{2}$矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN是$\sqrt{3}$矩形;
(3)将图②中的$\sqrt{3}$矩形BCMN沿用(2)中的方式操作3次后,得到一个“$\sqrt{n}$矩形”,则n的值是6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在矩形ABCD中,BC=$\sqrt{2}$AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O.给出下列命题:
①∠AEB=∠AEH;②DH=2$\sqrt{2}$EH;③HO=$\frac{1}{2}$AE;④BC-BF=$\sqrt{2}$EH
其中正确命题的序号是①③(填上所有正确命题的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列计算正确的是(  )
A.23+26=29B.23-24=2-1C.23×23=29D.24÷22=22

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知二次函数y=x2-2x+3,当0≤x≤m时,y最大值为3,最小值为2,则m的取值范围是1≤m≤2.

查看答案和解析>>

同步练习册答案