精英家教网 > 初中数学 > 题目详情
3.如图,在矩形ABCD中,BC=$\sqrt{2}$AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O.给出下列命题:
①∠AEB=∠AEH;②DH=2$\sqrt{2}$EH;③HO=$\frac{1}{2}$AE;④BC-BF=$\sqrt{2}$EH
其中正确命题的序号是①③(填上所有正确命题的序号).

分析 根据矩形的性质得到AD=BC=$\sqrt{2}$AB=$\sqrt{2}$CD,由DE平分∠ADC,得到△ADH是等腰直角三角形,△DEC是等腰直角三角形,得到DE=$\sqrt{2}$CD,得到等腰三角形求出∠AED=67.5°,∠AEB=180°-45°-67.5°=67.5°,得到①正确;设DH=1,则AH=DH=1,AD=DE=$\sqrt{2}$,求出HE=$\sqrt{2}-1$,得到2$\sqrt{2}$HE=$2\sqrt{2}(\sqrt{2}-1)$≠1,故②错误;通过角的度数求出△AOH和△OEH是等腰三角形,从而得到③正确;由△AFH≌△CHE,到AF=EH,由△ABE≌△AHE,得到BE=EH,于是得到BC-BF=(BE+CE)-(AB-AF)=(CD+EH)-(CD-EH)=2EH,从而得到④错误.

解答 解:在矩形ABCD中,AD=BC=$\sqrt{2}$AB=$\sqrt{2}$CD,
∵DE平分∠ADC,
∴∠ADE=∠CDE=45°,
∵AH⊥DE,
∴△ADH是等腰直角三角形,
∴AD=$\sqrt{2}$AB,
∴AH=AB=CD,
∵△DEC是等腰直角三角形,
∴DE=$\sqrt{2}$CD,
∴AD=DE,
∴∠AED=67.5°,
∴∠AEB=180°-45°-67.5°=67.5°,
∴∠AED=∠AEB,
故①正确;
设DH=1,
则AH=DH=1,AD=DE=$\sqrt{2}$,
∴HE=$\sqrt{2}-1$,
∴2$\sqrt{2}$HE=$2\sqrt{2}(\sqrt{2}-1)$≠1,
故②错误;
∵∠AEH=67.5°,
∴∠EAH=22.5°,
∵DH=CD,∠EDC=45°,
∴∠DHC=67.5°,
∴∠OHA=22.5°,
∴∠OAH=∠OHA,
∴OA=OH,
∴∠AEH=∠OHE=67.5°,
∴OH=OE,
∴OH=$\frac{1}{2}$AE,
故③正确;
∵AH=DH,CD=CE,
在△AFH与△EHC中,
$\left\{\begin{array}{l}{∠AHF=∠HCE=22.5°}\\{∠FAH=∠HEC=45°}\\{AH=CE}\end{array}\right.$,
∴△AFH≌△EHC,
∴AF=EH,
在△ABE与△AHE中,
$\left\{\begin{array}{l}{AB=AH}\\{∠BEA=∠HEA}\\{AE=AE}\end{array}\right.$,
∴△ABE≌△AHE,
∴BE=EH,
∴BC-BF=(BE+CE)-(AB-AF)=(CD+EH)-(CD-EH)=2EH,
故④错误,
故答案为:①③.

点评 本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图,在△ABC中,∠ACB=90°,CA=BC,直线l在△ABC的外部且过点C,AD⊥l,BE⊥l,垂足分别为点D、E.
(1)试说明:△ACD≌△CBE;
(2)如果直线l过点C且经过△ABC的内部,其他条件不变,结论是否仍然成立?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.已知三角形的两条边长分别为4cm和9cm,则其第三边长可能为(  )
A.4cmB.5cmC.6cmD.13cm

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图1,四边形ABCD中,AB∥CD,AD=DC=CB=a,∠A=60°.取AB的中点A1,连接A1C,再分别取A1C,BC的中点D1,C1,连接D1C1,得到四边形A1BC1D1.如图2,同样方法操作得到四边形A2BC2D2,如图3,…,如此进行下去,则四边形AnBCnDn的面积为$\frac{3\sqrt{3}}{{4}^{n+1}}$a2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.
(1)若点B的坐标是(-4,0),请在图中画出△AEF,并写出点E、F的坐标.
(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A)、音乐类(记为B)、球类(记为C)、其它类(记为D).根据调查结果发现该班每个学生都进行了登记且每人只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生进行了归类,并制作了如下两幅统计图.请你结合图中所给信息解答下列问题:

(1)七年级(1)班学生总人数为48人,扇形统计图中D类所对应扇形的圆心角为105度,请补全条形统计图;
(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名学生擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的$\frac{1}{3}$,那么点A的对应点A′的坐标是(2,3).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.现在网购越来越多地成为人们的一种消费方式,在2014年的“双11”网上促销活动中天猫和淘宝的支付交易额突破57000 000 000元,将数字57000 000 000用科学记数法表示为(  )
A.5.7×109B.5.7×1010C.0.57×1011D.57×109

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,△ABC中,AD是高,AE是角平分线,若∠ACB=110°,∠ABC=30°,求∠CAD和∠DAE的度数.

查看答案和解析>>

同步练习册答案