【题目】某建筑工地计划租用甲、乙两辆车清理建筑垃圾,已知甲车单独运完需要15天,乙车单独运完需要30天.甲车先运了3天,然后甲、乙两车合作运完剩下的垃圾.
(1)甲、乙两车合作还需要多少天运完垃圾?
(2)已知甲车每天的租金比乙车多100元,运完垃圾后建筑工地共需支付租金3950元.则甲、乙车每天的租金分别为多少元?
科目:初中数学 来源: 题型:
【题目】按要求画图:(1)如图1平面上有五个点,按下列要求画出图形.
①连接;
②画直线交于点;
③画出线段的反向延长线;
④请在直线上确定一点,使两点到点的距离之和最小,并写出画图的依据.
(2)有5个大小一样的正方形制成如图2所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注意:只需添加一个符合要求的正方形,并用阴影表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地图书馆为了满足群众多样化阅读的需求,决定购买甲、乙两种品牌的电脑若干组建电子阅览室.经了解,甲、乙两种品牌的电脑单价分别3100元和4600元.
(1)若购买甲、乙两种品牌的电脑共50台,恰好支出200000元,求甲、乙两种品牌的电脑各购买了多少台?
(2)若购买甲、乙两种品牌的电脑共50台,每种品牌至少购买一台,且支出不超过160000元,共有几种购买方案?并说明哪种方案最省钱.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=-3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x-2)2+k经过点A、B,并与x轴交于另一点C,其顶点为P.
(1)求a,k的值;
(2)抛物线的对称轴上是否存在一点M,使△ABM的周长最小,若存在,求出△ABM的周长;若不存在,请说明理由;
(3)若以AB为直径画圆,与抛物线的对称轴交于点N,求出点N坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)(观察思考):
如图,线段上有两个点,图中共有_________条线段;
(2)(模型构建):
如果线段上有个点(包括线段的两个端点),则该线段上共有___________条线段;
(3)(拓展应用):
某班8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行__________场比赛.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读材料)
我们知道“在数轴上表示的两个数,右边的数总比左边的数大”,利用此规律,我们可以求数轴上两个点之间的距离,具体方法是:用右边的数减去左边的数的差就是表示这两个数的两点之间的距离.若点表示的数是,点表示的数是,点在点的右边(即),则点,之间的距离为(即).
例如:若点表示的数是-6,点表示的数是-9,则线段.
(理解应用)
(1)已知在数轴上,点表示的数是-2020,点表示的数是2020,求线段的长;
(拓展应用)
如图,数轴上有三个点,点表示的数是-2,点表示的数是3,点表示的数是.
(2)当,,三个点中,其中一个点是另外两个点所连线段的中点时,求的值;
(3)在点左侧是否存在一点,使点到点,点的距离和为19?若存在,求出点表示的数:若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点是直线上一点,,是的平分线.
(1)当点,在直线的同侧,且在的内部时(如图1所示 ), 设,求的大小;
(2)当点与点在直线的两旁(如图2所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由;
(3)将图2 中的射线绕点顺时针旋转,得到射线,设,若,则的度数是 (用含的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.
(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;
(2)求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com