精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC内接于⊙O,且ABAC,延长BC至点D,使CDCA,连接AD交⊙O与点E,连接BECE.

(1)求证:ABE≌△CDE

(2)填空:

①当∠ABC的度数为______时,四边形AOCE是菱形;

②若AEAB2,则DE的长为______

【答案】(1)见解析;(2)60°;②

【解析】

1)由ABACCD=CA得出AB=CD,再根据圆内接四边形的性质和圆周角的性质可知,∠CED=∠AEB从而可证

2)①根据菱形的性质可知为等边三角形,进而可推出

②由可得进而可可,再利用相似三角形的性质可知,从而可求.

(1)证明:∵ABACCD=CA

∴∠ABC=∠ACBAB=CD

.∵四边形ABCE是圆内接四边形

∴∠CED=∠AEB.

(2)①当时,四边形AOCE是菱形

理由如下:连接AO,CO,OE,如下图

∵四边形AOCE是菱形

为等边三角形

②由可得

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AD>AB.

(1)作出ABC的平分线(尺规作图,保留作图痕迹,不写作法);

(2)若(1)中所作的角平分线交AD于点E,AFBE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过点A(﹣10),B30),C03)三点.

1)求抛物线的解析式;

2)点M是线段BC上的点(不与BC重合),过MNMy轴交抛物线于N,若点M的横坐标为m,请用含m的代数式表示MN的长;

3)在(2)的条件下,连接NBNC,是否存在点m,使△BNC的面积最大?若存在,求m的值和△BNC的面积;若不存在,说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数yx0)的图象与直线yx交于点M,∠AMB90°,其两边分别与两坐标轴的正半轴交于点AB,四边形OAMB的面积为6

1)求k的值;

2)点P在(1)的反比例函数yx0)的图象上,若点P的横坐标为3,在x轴上有一点D40),若在直线yx上有动点C,构成PDC,其面积为3,请写出C点的坐标;

3)若∠EPF90°,其两边分别为与x轴正半轴,直线yx交于点EF,问是否存在点E,使PEPF?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.

1)直接写出书店销售该科幻小说时每天的销售量(本)与销售单价(元)之间的函数关系式及自变量的取值范围.

2)书店决定每销售1本该科幻小说,就捐赠元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)

(1)小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.

请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是   三角形;∠ADB的度数为   

(2)在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;

(3)在原问题中,过点A作直线AE⊥BD,交直线BDE,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市努力改善空气质量,近年来空气质量明显好转,根据该市环境保护局公布的2010﹣2014这五年各年全年空气质量优良的天数如表所示,根据表中信息回答:

2010

2011

2012

2013

2014

234

233

245

247

256

(1)这五年的全年空气质量优良天数的中位数是________,平均数是________

(2)这五年的全年空气质量优良天数与它前一年相比增加最多的是________年(填写年份);

(3)求这五年的全年空气质量优良天数的方差________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,以AB为直径的O分别交BCAC于点DE,连结EB,交OD于点F

1)求证:ODBE

2)若DE=AB=6,求AE的长.

3)若CDE的面积是OBF面积的,求线段BCAC长度之间的等量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰ABC中,ABAC4cm,∠B30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BAAC方向运动到点C停止,若BPQ的面积为ycm2),运动时间为xs),则下列最能反映yx之间函数关系的图象是(  )

A.B.

C.D.

查看答案和解析>>

同步练习册答案