精英家教网 > 初中数学 > 题目详情
14.某批足球的质量检测结果如下:
抽取足球数n1002004006008001000
合格的频数m93192384564759950
合格的频率$\frac{m}{n}$0.930.960.960.940.950.95
(1)填写表中的空格.(结果保留0.01)
(2)画出合格的频率的折线统计图.
(3)从这批足球任意抽取的一只足球是合格品的概率估计值是多少?并说明理由.

分析 (1)根据频率=频数÷总数计算可得;
(2)由表格中数据在坐标系内用点描出来,再用线段依次相连即可得;
(3)根据频率估计概率,频率都在0.95左右波动,所以任意抽取的一只足球是合格品的概率估计值是0.95.

解答 解:(1)完成表格如下:

抽取足球数n1002004006008001000
合格的频数m93192384564759950
合格的频率$\frac{m}{n}$0.930.960.960.940.950.95
(2)如图所示:


(3)从这批足球任意抽取的一只足球是合格品的概率估计值0.95,
因为从折线统计图中可知,随着实验次数的增大,频率逐渐稳定到常数0.95附近,
所以从这批足球任意抽取的一只足球是合格品的概率估计值0.95.

点评 本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了频率分布折线图.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.解下列方程
(1)$\frac{6}{x-2}$=$\frac{1}{x+3}$;
(2)$\frac{x+1}{x-1}$-$\frac{4}{{x}^{2}-1}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解不等式或不等式组.
(1)解不等式:$\frac{x+17}{3}$-$\frac{3x-7}{4}$≤2
(2)解不等式组$\left\{\begin{array}{l}{2x+5≤3(x+2)}\\{\frac{x-2}{2}<\frac{x}{3}}\end{array}\right.$并写出不等式组的整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在等边△AOB中,将扇形COD按图1摆放,使扇形的半径OC、OD分别与OA、OB重合,OA=OB=2,OC=OD=1,固定等边△AOB不动,让扇形COD绕点O逆时针旋转,线段AC、BD也随之变化,设旋转角为α.(0<α≤360°).
(1)当OC∥AB时,旋转角α=60或240度;
发现:(2)线段AC与BD有何数量关系,请仅就图2给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列计算错误的是(  )
A.(a23=a5B.(ab)2=a2b2C.a2•a=a3D.(-a)3÷a2=-a

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在正n边形(n为整数,且n≥4)绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为正n边形的“叠弦角”,△AOP为“叠弦三角形”.以下说法,正确的是①.(填番号)
①在图1中,△AOB≌△AOD';         
②在图2中,正五边形的“叠弦角”的度数为360°;
③“叠弦三角形”不一定都是等边三角形; ④正n边形的“叠弦角”的度数为60°-$\frac{180°}{n}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.若一元二次方程ax2+bx+1=0有两个相同的实数根,则a2-b2+5的最小值为1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图:四边形ABCD中,AB=4,BC=2$\sqrt{10}$,CD=2$\sqrt{2}$,AD=4,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.定义:有一组对角互补的凸四边形叫做“对补四边形”,性质:“对补四边形”一定是圆内接四边形.
(1)概念理解:请你根据上述描述定义举一个“对补四边形”的例子;
(2)问题探究:如图1,在对补四边形ABCD中,如果∠A=∠C,试探究AB、AD、BC、CD之间的数量关系,并说明理由;
(3)应用拓展:如图2,在四边形ABCD中,AB≠BC,∠A=∠C=90°,连接BD,将△BCD沿BD折叠,得到△BFD.
①连接AF,四边形ABDF是对补四边形吗?请说明理由;
②若AB=1,BD=2,且BF把△ABD分成两个三角形的面积比为1:2,请求出CD的长.

查看答案和解析>>

同步练习册答案