【题目】如图,的直径,为圆周上一点,,过点作的切线,过点作的垂线,垂足为,与交于点.
(1)求的度数;
(2)求证:四边形是菱形.
【答案】(1)=30°;(2)证明见解析.
【解析】
(1)易得△AOC是等边三角形,则∠AOC=60°,根据圆周角定理得到∠AEC=30°;
(2)根据切线的性质得到OC⊥,则有OC∥BD,再根据直径所对的圆周角为直角得到∠AEB=90°,则∠EAB=30°,可证得AB∥CE,得到四边形OBEC为平行四边形,再由OB=OC,即可判断四边形OBEC是菱形.
(1)在△AOC中,AC=3,
∵AO=OC=3,
∴△AOC是等边三角形,
∴∠AOC=60°,
∴∠AEC=30°;
(2)∵OC⊥,BD⊥,
∴OC∥BD,
∴∠ABD=∠AOC=60°,
∵AB为⊙O的直径,
∴∠AEB=90°,
∴△AEB为直角三角形,∠EAB=30°.
∴∠EAB=∠AEC,
∴CE∥OB,
又∵CO∥EB,
∴四边形OBEC为平行四边形.
又∵OB=OC=3.
∴四边形OBEC是菱形.
科目:初中数学 来源: 题型:
【题目】甲乙两人同时登山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山的速度是 米/分钟,乙在A地提速时距地面的高度b为 米.
(2)若乙提速后,乙的速度是甲登山速度的3倍,请求出乙提速后y和x之间的函数关系式.
(3)登山多长时间时,乙追上了甲,此时乙距A地的高度为多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)线段AC,AG,AH什么关系?请说明理由;
(3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂以每千克200元的价格购进甲种原料360千克,用于生产A、B两种产品,生产1件A产品或1件B产品所需甲、乙两种原料的千克数如下表:
产品/原料 | A | B |
甲(千克) | 9 | 4 |
乙(千克) | 3 | 10 |
乙种原料的价格为每千克300元,A产品每件售价3000元,B产品每件售价4200元,现将甲种原料全部用完,设生产A产品x件,B产品m件,公司获得的总利润为y元.
(1)写出m与x的关系式;
(2)求y与x的关系式;
(3)若使用乙种原料不超过510千克,生产A种产品多少件时,公司获利最大?最大利润为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系内,的三个顶点的分别为,,(正方形网格中每个小正方形的边长是一个单位长度).
(1)在网格内画出向下平移2个单位长度得到的,点的坐标是________;
(2)以点为位似中心,在网格内画出,使与位似,且位似比为,点的坐标是________;
(3)的面积是________平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,O为坐标原点,A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市举行职工五人制足球联赛,共赛 17 轮(即每队均需参赛 17 场),记分办法是胜一场得 3分,平一场得 1 分,负一场得 0 分 . 若 足球队总积分为 16 分,且踢平场数是所负场数的整数倍,试推算 足球队所负场数的情况有( )
A.1 种B.2 种C.3 种D.4 种
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.
(1)该抛物线的解析式为;
(2)如图1,Q为抛物线上位于直线AB上方的一动点(不与B、A重合),过Q作QP⊥x轴,交x轴于P,连接AQ,M为AQ中点,连接PM,过M作MN⊥PM交直线AB于N,若点P的横坐标为t,点N的横坐标为n,求n与t的函数关系式;在此条件下,如图2,连接QN并延长,交y轴于E,连接AE,求t为何值时,MN∥AE.
(3)如图3,将直线AB绕点A顺时针旋转15度交抛物线对称轴于点C,点T为线段OA上的一动点(不与O、A重合),以点O为圆心、以OT为半径的圆弧与线段OC交于点D,以点A为圆心、以AT为半径的圆弧与线段AC交于点F,连接DF.在点T运动的过程中,四边形ODFA的面积有最大值还是有最小值?请求出该值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com