精英家教网 > 初中数学 > 题目详情

【题目】问题情境:

平面直角坐标系中,矩形纸片OBCD按如图的方式放置已知,将这张纸片沿过点B的直

线折叠,使点O落在边CD上,记作点A,折痕与边OD交于点E

数学探究:

C的坐标为______;

求点E的坐标及直线BE的函数关系式;

若点Px轴上的一点,直线BE上是否存在点Q,能使以ABPQ为顶点的四边形是平行四边形?

若存在,直接写出相应的点Q的坐标;若不存在,说明理由.

【答案】(1)(10,6);(2) ), ;(3)见解析.

【解析】

(1)根据矩形性质可得到C的坐标;(2)设由折叠知,中,根据勾股定理得,中,根据勾股定理得,解得可得由待定系数法可求直线BE的解析式;(3)存在,理由:由知,
分两种情况分析:BQ为的对角线时;BQ为边时.

解:四边形OBCD是矩形,



故答案为:
四边形OBCD是矩形,



由折叠知,
中,根据勾股定理得,

中,根据勾股定理得,



设直线BE的函数关系式为



直线BE的函数关系式为
存在,理由:由知,

能使以ABPQ为顶点的四边形是平行四边形,

BQ为的对角线时,

BPx轴,
的纵坐标等于点A的纵坐标6,
Q在直线BE上,



BQ为边时,
BP互相平分,




即:直线BE上是存在点Q,能使以ABPQ为顶点的四边形是平行四边形,点

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于(
A.55°
B.65°
C.75°
D.85°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠A∶∠B∶∠C=3510,又MNC≌△ABC,则∠BCM∶∠BCN等于(

A. 12 B. 13 C. 23 D. 14

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y= 的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y= 的图象上运动,tan∠CAB=2,则关于x的方程x2﹣5x+k=0的解为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为直线AB上一点,∠DOC为直角,OE平分∠AOC,OG平分∠BOC,OF平分∠BOD,下列结论错误的是(

A. ∠DOG与∠BOE互补 B. ∠AOE-∠DOF=45°

C. ∠EOD与∠COG互补 D. ∠AOE与∠DOF互余

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在十一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510.


普通间(元//天)

豪华间(元//天)

贵宾间(元//天)

三人间

50

100

500

双人间

70

150

800

单人间

100

200

1500

1)三人间、双人间普通客房各住了多少间?

2)设三人间共住了x人,则双人间住了 人,一天一共花去住宿费用y元表示,写出yx的函数关系式;

3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,FAD的中点,延长BC到点E,使CE=BC,连结DECF

1)求证:四边形CEDF是平行四边形;

2)若AB=4AD=6∠B=60°,求DE的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC 中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连接PC,若ABC的面积为8cm2,则BPC的面积为(

A. 4cm2 B. 5cm2 C. 6cm2 D. 7cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为贯彻落实十九大会议精神,践行绿水青山就是金山银山的发展理念,积极推动生态文明理念融入学校教育,某中学拟举办爱家乡、览名山活动,围绕哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?每名学生必选且只选一座山的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的不完整统计图请根据统计图的信息回答下列问题:

本次调查共抽取了多少名学生?

求本次调查中,最喜欢风凰山的学生人数,并补全条形统计图;

若该中学共有学生1200人,请你估计该中学最喜欢香炉山的学生约有多少人.

查看答案和解析>>

同步练习册答案