精英家教网 > 初中数学 > 题目详情

【题目】A市准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的提示牌和垃圾箱,若购买2个提示牌和3个垃圾箱共需550元,且垃圾箱的单价是提示牌单价的3倍.

1)求提示牌和垃圾箱的单价各是多少元?

2)该小区至少需要安放48个垃圾箱,如果购买提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案.

【答案】150元,150元;(2)提示牌50个,垃圾箱50个;提示牌51个,垃圾箱49个;提示牌52个,垃圾箱48个;

【解析】

1)根据购买2个提示牌和3个垃圾箱共需550,建立方程求解即可得出结论;

2)根据费用不超过10000元和至少需要安放48个垃圾箱,建立不等式即可得出结论.

解:(1)设提示牌的单价为元,则垃圾箱的单价为元,

根据题意得,

即:提示牌和垃圾箱的单价各是50元和150元;

2)设购买提示牌为正整数),则垃圾箱为个,

根据题意得,

为正整数,

505152,共3种方案;

即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.

据统计图提供的信息,解答下列问题:

(1)在这次调查中一共抽取了   名学生,m的值是   

(2)请根据据以上信息直在答题卡上补全条形统计图;

(3)扇形统计图中,数学所对应的圆心角度数是   度;

(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)若△ABC和△A1B1C1关于x轴成轴对称,画出△A1B1C1

(2)点C1的坐标为_________,△ABC的面积为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知长方形中,,点在边上,由运动,速度为,运动时间为秒,将沿着翻折至,点对应点为所在直线与边交与点

1)如图,当时,求证:

2)如图,当为何值时,点恰好落在边上;

3)如图,当时,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市道路美化工程招标,经测算:甲队 12 天完成的工程量是乙队 9 天完成的工程量的2 倍,甲队干 20 天比乙队干 15 天多完成的工程量占总工程量的.

1)求甲、乙两队一天各完成此项工程的量?

2)甲队施工一天需付工程款 1.5 万元,乙队施工一天需付工程款 0.8 万元,若要求完成此项工程的工程款不超过 81 万元,则乙队最少施工多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在中,点的平分线的交点,点平分线的交点,的延长线交于点

1)若,则 °;

2)若 ),则当等于多少度(用含的代数式表示)时,,并说明理由;

3)若,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD和四边形DEFG都是正方形,点E,G分别在AD,CD上,连接AF,BF,CF.

(1)求证:AF=CF;

(2)若∠BAF=35°,求∠BFC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=4,则BE的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角三角形ABD中,AD=BD,点FAD上的一个动点,过点AACBF,交BF的延长线于点E,交BD的延长线于点C,则下列说法错误的是(

A.CD=DFB.AC=BFC.AD=BED.CAD+ABF=45°

查看答案和解析>>

同步练习册答案