【题目】按要求解一元二次方程
(1)4x2﹣8x+1=0(配方法) (2)7x(5x+2)=6(5x+2)(因式分解法)
(3)3x2+5(2x+1)=0(公式法) (4)x2﹣2x﹣8=0.
【答案】(1) x1=1+,x2=1﹣.(2) x1=﹣,x2=;(3) x1=,x2=;(4) x1=﹣4,x2=2.
【解析】试题分析:(1)利用配方法解方程.(2)利用因式分解法(提取公因式)解方程.(3)利用公式法解方程.
(4)利用因式分解法(十字相乘)解方程.
试题解析:
解:(1)4x2﹣8x+1=0(配方法)
移项得,x2﹣2x=,
配方得,x2﹣2x+1=+1,
(x﹣1)2=,
∴x﹣1=±
∴x1=1+,x2=1﹣.
(2)7x(5x+2)=6(5x+2)(因式分解法)
7x(5x+2)﹣6(5x+2)=0,
(5x+2)(7x﹣6)=0,
∴5x+2=0,7x﹣6=0,
∴x1=﹣,x2=;
(3)3x2+5(2x+1)=0(公式法)
整理得,3x2+10x+5=0
∵a=3,b=10,c=5,b2﹣4ac=100﹣60=40,
∴x==,
∴x1=,x2 =.
(4)x2﹣2x﹣8=0.
(x+4)(x﹣2)=0,
∴x+4=0,x﹣2=0,
∴x1=﹣4,x2=2.
科目:初中数学 来源: 题型:
【题目】一张如图1的长方形铁皮,四个角都剪去边长为30厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a(cm),宽是3a(cm),这个无盖铁盒各个面的面积之和称为铁盒的全面积.
(1)请用a的代数式表示图1中原长方形铁皮的面积;
(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为(cm2),则油漆这个铁盒需要多少钱(用a的代数式表示)?
(3)铁盒的底面积是全面积的几分之几(用a的代数式表示)?若铁盒的底面积是全面积的,求a的值;
(4)是否存在一个正整数a,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个a,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①、②、③、○n、…、M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连接OM、ON.
(1)求图①中∠MON的度数;
(2)图②中∠MON的度数是_________,图③中∠MON的度数是___________;
(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于的长为半径在AD的两侧作弧,交于两点M、N;第二步,连结MN,分别交AB、AC于点E、F;第三步,连结DE、DF..若BD=6,AF=4,CD=3,则BE的长是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A的坐标为(0,2),点P(t,0)在x轴上,B是线段PA的中点.将线段PB绕着点P顺时针方向旋转90°,得到线段PC,连结OB、BC.
(1)判断△PBC的形状,并简要说明理由;
(2)当t>0时,试问:以P、O、B、C为顶点的四边形能否为平行四边形?若能,求出相应的t的值?若不能,请说明理由;
(3)当t为何值时,△AOP与△APC相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线y=kx+b与反比例函数y=(x>0)的图象分别交于点 A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.
(1)求直线AB的解析式;
(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,点的坐标为,连接.
()求证:是等边三角形.
()点在线段的延长线上,连接,作的垂直平分线,垂足为点,并与轴交于点,分别连接、.
①如图,若,直接写出的度数.
②若点在线段的延长线上运动(与点不重合),的度数是否变化?若变化,请说明理由;若不变,求出的度数.
()在()的条件下,若点从点出发在的延长线上匀速运动,速度为每秒个单位长度,与交于点,设的面积为,的面积为,,运动时间为秒时.求关于的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1:y1=x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(-2,0),与y轴交于点C.两条直线相交于点D,连接AB.
(1)求两直线交点D的坐标;
(2)求△ABD的面积;
(3)根据图象直接写出y1>y2时自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示为一机器零件的三视图.
(1)请写出符合这个机器零件形状的几何体的名称.
(2)若俯视图中三角形为正三角形,那么请根据图中所标的尺寸,计算这个几何体的表面积(单位:cm2).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com