【题目】如图,在数轴上点A表示数a,点B表示数b,点C表示数c,其中数b是最小的正整数,数a、c满足|a+2|+(c-6)2=0.若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.
(1)由题意可得:a= ,b= ,c= .
(2)若点A以每秒1个单位长度的速度沿数轴向左运动,点B和点C分别以每秒2个单位长度和3个单位长度的速度沿数轴向右运动,设点A、B、C同时运动,运动时间为t秒.
①当t=2时,分别求AC、AB的长度;
②在点A、B、C同时运动的过程中,3AC-4AB的值是否随着时间t的变化而变化?若变化,说明理由;若不变,求出3AC-4AB的值.
【答案】(1)-2,1,6;(2)①16,9;②在点A、B、C同时运动的过程中,3AC-4AB的值不随时间t的变化而变化,它的值为定值12.
【解析】
(1) 根据绝对值的非负性和偶数次方数的非负性,即可得出a,c的值,再由b时最小的正整数,即可得b的值.
(2) 用含有t的代数式分别表示AC、AB的长度,
①代入t=2,即可得到结果;
②AC、AB的代数式代入3AC-4AB中,即可得出结论.
(1)∵|a+2|+(c-6)2=0,b时最小的正整数,
∴a=-2,b=1,c=6;
(2)∵当时间为t秒时,A点表示的数为-t-2,B点表示的数为2t+1,C点表示的数为3t+6.
∴,
①当t=2时,,,
②,即,在点A、B、C同时运动的过程中,3AC-4AB的值不随时间t的变化而变化,它的值为定值12.
科目:初中数学 来源: 题型:
【题目】如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.
(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)
(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BE是圆O的直径,A在EB的延长线上,AP为圆O的切线,P为切点,弦PD垂直于BE于点C.
(1)求证:∠AOD=∠APC;
(2)若OC:CB=1:2,AB=6,求圆O的半径及tan∠APB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】乔亚萍做一道数学题,“已知两个多项式,,试求.”其中多项式的二次项系数印刷不清楚
(1)乔亚萍看了答案以后知道,请你替乔亚萍求出多项式的二次项系数;
(2)在(1)的基础上,乔亚萍已经将多项式正确求出,老师又给出了一个多项式,要求乔亚萍求出的结果.乔亚萍在求解时,误把“”看成“”,结果求出的答案为,请你替乔亚萍求出“”的正确答案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=8cm,BC=10cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,当一个点到达终点时,另一个点随之停止.设运动时间为x秒,△PBQ的面积为ycm2.
(1)求y与x的函数关系式,写出x的取值范围;
(2)求运动多少秒时,△PBQ的面积为12cm2;
(3)求运动多少秒时,△PBQ的面有最大值.最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是。
已知点A是数轴上的点,完成下列各题:
(1)如果点A表示的数是3,将点A先向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是__________,A、B两点间的距离为__________;
(2)如果点A表示的数是-4,将点A先向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是__________,A、B两点间的距离为__________;
(3)一般地,如果点A表示的数是m,将点A先向右移动n个单位长度,再向左移动t个单位长度,那么终点B表示的数是__________,A、B两点间的距离为__________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有个形如六边形的点阵,它的中心是一个点,算第一层,第二层每边有两个点,第三层每边有三个点,依此类推.
(1)填写下表:
层数 | 1 | 2 | 3 | 4 | 5 | 6 |
该层对应的点数 | 1 | 6 | _____ | 18 | _____ | _____ |
(2)写出第n层所对应的点数为_____;
(3)如果某一层共96个点,那么它是第_____层,此时所有层中共有_____个点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.
(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是 ;
(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;
(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com