精英家教网 > 初中数学 > 题目详情
如图,正方形的边长为
2
+2,剪去4个角后成为一个正八边形,求这个正八边形的边长和面积.
考点:正方形的性质,正多边形和圆
专题:
分析:设剪去三角形的直角边长x,根据勾股定理可得,三角形的斜边长为
2
x,即正八边形的边长为
2
x,依题意得
2
x+2x=
2
+2,解方程即可求出正八边形的边.用正方形的面积减去4个等腰直角三角形的面积即可求得正八边形的面积.
解答:解:设剪去三角形的直角边长x,根据勾股定理可得,三角形的斜边长为
2
x,即正八边形的边长为
2
x,
2
x+2x=
2
+2,
∴x=1,
∴正八边形的边长等于
2
x=
2

∴正八边形的面积=(
2
+2)2-4×
1
2
×12=4+4
2
点评:本题考查了正方形和正八边形的性质以及勾股定理的运用,解题的关键是设出未知数用列方程的方法解决几何问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图.它是由四个相同的直角三角形(Rt△AED,Rt△BFA,Rt△CGB,Rt△DHC)与中间的小正方形EFGH拼成的,
(1)试说明拼成的四边形ABCD是正方形.
(2)若四边形ABCD的面积为13.每个直角三角形两直角边的和为5,求中间小正方形EFGH的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

小亮用科学记数法记录一个较大的数据时,由于位数太多,他少数了一位,把数据写成1.12×1022,正确的写法应该是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2-mx+m-2:
(1)求证:不论m为任何实数,此二次函数的图象与x轴都有两个交点;
(2)当二次函数的图象经过点(3,6)时,确定m的值,并写出此二次函数与坐标轴的交点坐标..

查看答案和解析>>

科目:初中数学 来源: 题型:

某服装厂现有A种布料35m,B种布料26m,现计划用这两种布料生产男、女两种款式的时装共40套.已知做一套男时装需要A种布料0.6m,B种布料0.9m,可获利90元;做一套女时装需要A种布料1.1m,B种布料0.4m,可获利100元.若设生产男时装套数为x套,用这批布料生产这两种时装所获的总利润为y元.
(1)求y与x的函数关系式,并求出x的取值范围;
(2)该服装厂在生产这批时装中,当生产男时装多少套时,所获利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AC平分∠BAD,CE⊥AB于E,BC=CD,∠ADC+∠B=180°,探究2AE与AB,AD的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列判断中正确的是(  )
A、四边相等的四边形是正方形
B、四角相等的四边形是矩形
C、对角线互相垂直的平行四边形是正方形
D、对角线互相垂直的四边形是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

8袋大米,以每袋50千克为准,超过的千克记作正数,分别为:-2、+1、+4、-6、-3、-4、+5、-3,求8袋大米共重多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

在函数y=kx(k<0)的图象上有A(1,y1),B(-1,y2),C(-2,y3)三个点,则下列各式正确的是(  )
A、y1<y2<y3
B、y1<y3<y2
C、y3<y2<y1
D、y2<y3<y1

查看答案和解析>>

同步练习册答案