精英家教网 > 初中数学 > 题目详情

【题目】如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动(抛物线随顶点一起平移),与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为( )

A.﹣3
B.1
C.5
D.8

【答案】D
【解析】解:当点C横坐标为﹣3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;
当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D(8,0);
由于此时D点横坐标最大,
故点D的横坐标最大值为8;
故选:D.
当C点横坐标最小时,抛物线顶点必为A(1,4),根据此时抛物线的对称轴,可判断出CD间的距离;
当D点横坐标最大时,抛物线顶点为B(4,4),再根据此时抛物线的对称轴及CD的长,可判断出D点横坐标最大值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中有点B﹣10)和y轴上一动点A0a),其中a0,以A点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(cd).

1)当a=2时,则C点的坐标为      );

2)动点A在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.

3)当a=2时,在坐标平面内是否存在一点P(不与点C重合),使△PAB与△ABC全等?若存在,直接写出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】.如图,以等腰直角ABC 的直角边 AC 作等边ACD,CEAD E, BD、CE 交于点 F.

(1)求∠DFE 的度数;

(2)求证:AB=2DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.

(1)求购进A、B两种纪念品每件各需多少元?

(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?

(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图正方形网格中小方格边长为1请你根据所学的知识解决下面问题

1)求网格图中ABC的面积

2)判断ABC是什么形状?并所明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,5),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的路线移动(即:沿着长方形移动一周)

(1)写出点B的坐标      );

(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标;

(3)在移动过程中,当点Px轴距离为4个单位长度时,求点P移动的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课本例题

已知:如图,AD的角平分线,,垂足分别为EF.求证:AD垂直平分EF

小明做法

证明:因为AD的角平分线,,所以

理由是:“角平分线上的点到这个角的两边的距离相等”.

因为

所以AD垂直平分EF

理由是:“到线段两个端点距离相等的点在这条线段的垂直平分线上”.

老师观点

老师说:小明的做法是错误的

请你解决

指出小明做法的错误;

正确、完整的解决这道题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图直线ABCDEF交于点OOG平分∠BOFCDEF,∠AOE=64°,求∠AOF,∠DOG的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为线段上一动点,分别过点,连接.已知,设.

(1)用含的代数式表示的值;

(2)探究:当点满足什么条件时,的值最小?最小值是多少?

(3)根据(2)中的结论,请构造图形求代数式的最小值.

查看答案和解析>>

同步练习册答案