【题目】如图,在ABCD中,E,F是对角线BD上的两点,BE=DF,点G,H分别在BA和DC的延长线上,且AG=CH,连接GE,EH,HF,FG.
(1)求证:四边形GEHF是平行四边形;
(2)若点G,H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)
【答案】(1)见解析;(2)仍成立.
【解析】
(1)先由平行四边形的性质,得AB=CD,AB∥CD,根据两直线平行内错角相等得∠GBE=∠HDF.再由SAS可证△GBE≌△HDF,利用全等的性质,证明∠GEF=∠HFE,从而得GE∥HF,又GE=HF,运用一组对边平行且相等的四边形是平行四边形得证.
(2)仍成立.可仿照(1)的证明方法进行证明.
(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,∴∠GBE=∠HDF.
又∵AG=CH,∴BG=DH.
又∵BE=DF,∴△GBE≌△HDF.
∴GE=HF,∠GEB=∠HFD,∴∠GEF=∠HFE,
∴GE∥HF,∴四边形GEHF是平行四边形.
(2)解:仍成立.(证法同上)
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=6,BC=8,AC,BD相交于O,P是边BC上一点,AP与BD交于点M,DP与AC交于点N.
①若点P为BC的中点,则AM:PM=2:1;
②若点P为BC的中点,则四边形OMPN的面积是8;
③若点P为BC的中点,则图中阴影部分的总面积为28;
④若点P在BC的运动,则图中阴影部分的总面积不变.
其中正确的是 . (填序号即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,、的交点为,现作如下操作:
第一次操作,分别作和的平分线,交点为,
第二次操作,分别作和的平分线,交点为,
第三次操作,分别作和的平分线,交点为,
…
第次操作,分别作和的平分线,交点为.
若度,那等于__________度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y= 的表达式;
(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.
(1)若∠ABC=70°,则∠NMA的度数是 度.
(2)若AB=8cm,△MBC的周长是14cm.
①求BC的长度;
②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P( +1, ﹣1)在双曲线y= (x>0)上.
(1)求k的值;
(2)若正方形ABCD的顶点C,D在双曲线y= (x>0)上,顶点A,B分别在x轴和y轴的正半轴上,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC的顶点坐标是A(﹣7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,﹣1),E(﹣1,﹣7).
(1)试说明如何平移线段AC,使其与线段ED重合;
(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;
(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠B=90°,∠ACB=30°,AB=2,CD=3,AD=5.
(1)求证:AC⊥CD;
(2)求四边形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com