【题目】在矩形ABCD中,AB=6,BC=8,AC,BD相交于O,P是边BC上一点,AP与BD交于点M,DP与AC交于点N.
①若点P为BC的中点,则AM:PM=2:1;
②若点P为BC的中点,则四边形OMPN的面积是8;
③若点P为BC的中点,则图中阴影部分的总面积为28;
④若点P在BC的运动,则图中阴影部分的总面积不变.
其中正确的是 . (填序号即可)
【答案】①③
【解析】解:①正确;
∵四边形ABCD是矩形,
∴∠ABC=∠BCD=90°,AD=BC,AD∥BC,
∴AM:PM=AD:BP,
∵点P为BC的中点,
∴BP= BC= AD,
∴AM:PM=2:1;
②不正确;作MG⊥BC于G,如图所示:
则MG∥AB,
∴△PMG∽△PAB,
∴MG:AB=PM:PA=1:3,
∴MG= AB=2,
∴四边形OMPN的面积=△BOC的面积﹣△MBP的面积﹣△NCP的面积= ×8×6﹣ ×4×2﹣ ×4×2=4;③正确;
∵图中空白部分的面积=△DBP的面积+△ACP的面积﹣四边 形OMPN的面积= ×4×6+ ×4×6﹣4=20,
∴图中阴影部分的总面积=矩形ABCD的面积﹣图中空白部分的面积=8×6﹣20=28;④错误;
∵P在B时,阴影部分的面积= ×6×8=24≠28;
正确的有①③;
所以答案是:①③.
【考点精析】掌握矩形的性质和平行线分线段成比例是解答本题的根本,需要知道矩形的四个角都是直角,矩形的对角线相等;三条平行线截两条直线,所得的对应线段成比例.
科目:初中数学 来源: 题型:
【题目】在如图所示的直角坐标系中,△ABC的顶点坐标分别是A(-4,-1),B(1,1),C(-1,4);点是△ABC内一点,当点平移到点时.
①请写出平移后新三个顶点的坐标;
②求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙、丁一起研究一道数学题,如图,已知 EF⊥AB,CD⊥AB,甲说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB.”乙说:“如果还知道∠AGD=∠ACB,则能得到∠CDG=∠BFE.”丙说:“∠AGD 一定大于∠BFE.”丁说:“如果连接 GF,则 GF∥AB.”他们四人中,正确的是( )
A.0 个B.1 个C.2 个D.3 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一个角的两边与另一个角的两边分别平行,结合下图,试探索这两个角之间的数量关系,并说明你的理由.
(1)如图1,AB∥EF,BC∥DE.猜想∠1与∠2的数量关系是:_______.
(2)如图2,AB∥EF,BC∥DE. 猜想∠1与∠2的数量关系是:_______.
(3)由(1)(2)可以得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角_____ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知 AD⊥BC,垂足为点 D,EF⊥BC,垂足为点 F,∠1+∠2=180°, 请填写∠CGD=∠CAB 的理由.
解:因为 AD⊥BC,EF⊥BC( )
所以∠ADC=90°,∠EFD=90°( )
得∠ADC=∠EFD( )
所以 AD//EF( )
得∠2+∠3=180° ( )
又因为∠1+∠2=180°(已知)
所以∠1=∠3( )
所以 DG//AB( )
所以∠CGD=∠CAB( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=﹣ x+2分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,OE=2.
(1)求反比例函数的解析式;
(2)连接OD,求△OBD的面积.
(3)x取何值时,反比例函数的值大于一次函数的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=ABAD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.
(1)如图2,若四边形ABCD为“可分四边形”,∠DAB为“可分角”,且∠DCB=∠DAB,则∠DAB=°.
(2)如图3,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;
(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了备战初三物理、化学实验操作考试.某校对初三学生进行了模拟训练.物理、化学各有4个不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定.小张同学对物理的①、②和化学的b、c实验准备得较好,请用树形图或列表法求他两科都抽到准备得较好的实验题目的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,E,F是对角线BD上的两点,BE=DF,点G,H分别在BA和DC的延长线上,且AG=CH,连接GE,EH,HF,FG.
(1)求证:四边形GEHF是平行四边形;
(2)若点G,H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com