精英家教网 > 初中数学 > 题目详情

【题目】如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=ABAD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.

(1)如图2,若四边形ABCD为“可分四边形”,∠DAB为“可分角”,且∠DCB=∠DAB,则∠DAB=°.

(2)如图3,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;

(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长?

【答案】
(1)120
(2)证明:∵∠DAB=60°,AC平分∠DAB,

∴∠DAC=∠CAB=30°,

∴∠D+∠ACD=180°﹣30°=150°,

∵∠BCD=∠ACD+∠ACB=150°,

∴∠D=∠ACB,

∴△ADC∽△ACB.

∴AD:AC=AC:AB,

∴AC2=ABAD,

∴四边形ABCD为“可分四边形”


(3)解:∵四边形ABCD为“可分四边形”,∠DAB为“可分角”,

∴AC2=ABAD,∠DAC=∠CAB,

∴AD:AC=AC:AB,

∴△ADC∽△ACB,

∴∠D=∠ACB=90°,

∴AB= = =2

∴AD= = =


【解析】(1)解:如图所示:

∵AC平分∠DAB,

∴∠1=∠2,

∵AC2=ABAD,

∴AD:AC=AC:AB,

∴△ADC∽△ACB,

∴∠D=∠4,

∵∠DCB=∠DAB,

∴∠DCB=∠3+∠4=2∠1,

∵∠1+∠D+∠4=180°,

∴∠1+2∠1=180°,

解得:∠1=60°,

∴∠DAB=120°;

所以答案是:120;

【考点精析】关于本题考查的三角形的内角和外角和勾股定理的概念,需要了解三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知△ABC,AB=AC,D为BC上一点,E为AC上一点,AD=AE.

(1)如果∠BAD=10°,∠DAE=30°,那么∠EDC=   °.

(2)如果∠ABC=60°,∠ADE=70°,那么∠BAD=   °,∠CDE=   °.

(3)设∠BAD=α,∠CDE=β猜想α,β之间的关系式,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD2=ABAE.
求证:DE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=6,BC=8,AC,BD相交于O,P是边BC上一点,AP与BD交于点M,DP与AC交于点N.
①若点P为BC的中点,则AM:PM=2:1;
②若点P为BC的中点,则四边形OMPN的面积是8;
③若点P为BC的中点,则图中阴影部分的总面积为28;
④若点P在BC的运动,则图中阴影部分的总面积不变.
其中正确的是 . (填序号即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.

(1)求证:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把棱长为1cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)

(1)该几何体中有 小正方体?

(2)其中两面被涂到的有 个小正方体;没被涂到的有 个小正方体;

(3)求出涂上颜色部分的总面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在数轴上AB两点对应的数分别是6-6,∠DCE=90°CO重合,D点在数轴的正半轴上)

1)如图1,若CF平分∠ACE,则∠AOF=_______

2)如图2,将∠DCE沿数轴的正半轴向右平移t0t3)个单位后,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α

①当t=1时,α=_______

②猜想∠BCEα的数量关系,并证明;

3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t0t3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t0t3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1,若αβ满足|α-β|=40°,请直接写出t的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知的交点为,现作如下操作:

第一次操作,分别作的平分线,交点为

第二次操作,分别作的平分线,交点为

第三次操作,分别作的平分线,交点为

次操作,分别作的平分线,交点为

度,那等于__________度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P( +1, ﹣1)在双曲线y= (x>0)上.

(1)求k的值;
(2)若正方形ABCD的顶点C,D在双曲线y= (x>0)上,顶点A,B分别在x轴和y轴的正半轴上,求点C的坐标.

查看答案和解析>>

同步练习册答案