精英家教网 > 初中数学 > 题目详情

【题目】如图,点P( +1, ﹣1)在双曲线y= (x>0)上.

(1)求k的值;
(2)若正方形ABCD的顶点C,D在双曲线y= (x>0)上,顶点A,B分别在x轴和y轴的正半轴上,求点C的坐标.

【答案】
(1)解:点P( )在双曲线 上,

将x= ,y= 代入解析式可得:

k=2;


(2)解:过点D作DE⊥OA于点E,过点C作CF⊥OB于点F,

∵四边形ABCD是正方形,

∴AB=AD=BC,∠CBA=90°,

∴∠FBC+∠OBA=90°,

∵∠CFB=∠BOA=90°,

∴∠FCB+∠FBC=90°,

∴∠FBC=∠OAB,

在△CFB和△AOB中,

∴△CFB≌△AOB(AAS),

同理可得:△BOA≌△AED≌△CFB,

∴CF=OB=AE=b,BF=OA=DE=a,

设A(a,0),B(0,b),

则D(a+b,a)C(b,a+b),

可得:b(a+b)=2,a(a+b)=2,

解得:a=b=1.

所以点C的坐标为:(1,2).


【解析】(1)由待定系数法把P坐标代入解析式即可;(2)C、D均在双曲线上,它们的坐标就适合解析式,设出C坐标,再由正方形的性质可得△CFB≌△AOB△BOA≌△AED≌△CFB,代入解析式得b(a+b)=2,a(a+b)=2,即可求出C坐标.
【考点精析】掌握正方形的性质是解答本题的根本,需要知道正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=ABAD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.

(1)如图2,若四边形ABCD为“可分四边形”,∠DAB为“可分角”,且∠DCB=∠DAB,则∠DAB=°.

(2)如图3,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;

(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC中,∠B50°,∠C70°ADABC的角平分线,DEABE点.

1)求∠EDA的度数;

2AB10AC8DE3,求SABC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD,E,F是对角线BD上的两点,BE=DF,G,H分别在BADC的延长线上,AG=CH,连接GE,EH,HF,FG.

(1)求证:四边形GEHF是平行四边形;

(2)若点G,H分别在线段BADC,其余条件不变,(1)中的结论是否成立?(不用说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从点B出发,沿BC以2cm/s的速度向点C移动,点Q从点C出发,以1cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为t s,当t=时,△CPQ与△CBA相似.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),点P是x轴上一动点,过点P作x轴的垂线交抛物线于点C,交直线AB于点D,设P(x,0).

(1)求抛物线的函数表达式;
(2)当0<x<3时,求线段CD的最大值;
(3)在△PDB和△CDB中,当其中一个三角形的面积是另一个三角形面积的2倍时,求相应x的值;
(4)过点B,C,P的外接圆恰好经过点A时,x的值为 . (直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某体育用品商场采购员要到厂家批发购进篮球和排球共100个,付款总额不得超过11815元.已知:厂家两种球的批发价如()、商场在某两天的零售信息如()

品名

厂家批发价(/)

篮球

130

排球

100

()

篮球()

排球()

零售总价()

第一天

8

5

1880

第二天

6

10

2160

()

请解决以下问题:

1)求出体育商场出售篮球和排球的零售单价.

2)该采购员最多可从厂家购进篮球多少个.

3)若该商场把这100个球全部以零售价售出,为使商场的利润不低于2580元,则采购员采购的方案有哪几种?该商场最多可盈利__________元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们规定:a*b=,则下列等式中对于任意实数 a、b、c 都成立的是( )

①a+(b*c)=(a+b)*(a+c) ②a*(b+c)=(a+b)*c

③a*(b+c)=(a*b)+(a*c) ④(a*b)+c= +(b*2c)

A. ①②③ B. ①②④ C. ①③④ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一直角三角板MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

1)求∠CON的度数;

2)如图2是将图1中的三角板绕点O按每秒15°的速度沿逆时针方向旋转一周的情况,在旋转的过程中,第t秒时,三条射线OAOCOM构成两个相等的角,求此时的t

3)将图1中的三角板绕点O顺时针旋转至图3(使ON在∠AOC的外部),图4(使ON在∠AOC的内部)请分别探究∠AOM与∠NOC之间的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案