精英家教网 > 初中数学 > 题目详情
12.对于任意实数k关于x的方程x2-2kx+k2-1=0根的情况为(  )
A.有两个不相等的实数根B.有两个相等的实数根
C.没有实数根D.无法确定

分析 先求出△=b2-4ac的值,根据△>O有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根作出判断.

解答 解:∵△=4k2-4(k2-1)=4>0,
∴方程有两个不相等的实数根.
故选A.

点评 本题考查根的判别式,解题的关键是记住判别式,△>O有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.计算:
(1)($\sqrt{2}$-1.414)0+($\frac{1}{3}$)-1-$\sqrt{3}$+2cos30°
(2)先化简,再求值:$\frac{x-2}{{x}^{2}-1}$$•\frac{x+1}{{x}^{2}-4x+4}$+$\frac{1}{x-1}$,其中x是从-1、0、1、2中选取一个合适的数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知抛物线y=ax2+bx+c(a≠0)的顶点为(1,-3),且抛物线经过点A(-1,0),与x轴交于另一点B,与y轴交与点C.
(1)求这条抛物线的函数关系式及点B、C的坐标;
(2)在抛物线的对称轴上是否存在点P,使△BCP是以BC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)已知在对称轴上存在一点M,使得△AMC的周长最小,请直接写出点M的坐标(1,-$\frac{3}{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.方程$\frac{3}{2x+2}=1-\frac{1}{x+1}$的解是$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,E,F分别是矩形ABCD的边AB,CD的中点,连接DE和BF,分别取DE,BF的中点M,N.连接AM,CN,MN,则投掷一次,飞镖落在阴影部分的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.若二元一次方程组$\left\{\begin{array}{l}{ax-2016y=2015}\\{2016x-by=2017}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,则二元一次方程组$\left\{\begin{array}{l}{a(x-y)-2016(x+y)=2015}\\{2016(x-y)-b(x+y)=2017}\end{array}\right.$的解是(  )
A.$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$B.$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$C.$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=-\frac{1}{2}}\end{array}\right.$D.$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=\frac{1}{2}}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.分式$\frac{x-3}{2x-3}$的值为0,则x的值为3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.小明与父母从海口乘火车去上海,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,在矩形ABCD中,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE,则∠AOB的度数为60°.

查看答案和解析>>

同步练习册答案