【题目】如图,直线AB、CD相交于点O,OE平分∠BOD.
(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度数;
(2)若OF平分∠COE,∠BOF=15°,求∠AOC的度数。
【答案】(1)55°(2)100°
【解析】
(1)根据对顶角相等,可得∠BOD=∠AOC,再根据OE平分∠∠BOD,可得∠EOD,由角的和差,可得答案;
(2)根据对顶角相等,可得∠BOD=∠AOC,根据OE平分∠BOD,可得∠EOD,根据邻补角,可得∠COE,根据角的和差,可得∠EOF,根据角平分线,可得答案.
(1)∠DOB=∠AOC=70°
∵OE平分∠BOD
∴∠DOE= ∠BOD=35°
∴∠EOF=∠DOF∠DOE=55°;
(2)设∠AOC=x,则∠DOB=∠AOC=x
∵OE平分∠BOD
∴∠DOE=∠EOB=∠BOD=x
∴∠EOC=180°∠DOE=180°
∵∠EOF=∠EOB+∠BOF
∴∠EOF=+15°
∵OF平分∠COE
∴∠EOC=2∠EOF
∴180=2(+15°)
解得:x=100°
即∠AOC=100°.
科目:初中数学 来源: 题型:
【题目】在平行四边形中,,,是上的一个动点,由向运动(与、不重合),速度为每秒,是延长线上一点,与点以相同的速度由向延长线方向运动(不与重合),连结交AB于.
(1)如图1,若,,求点P运动几秒后,.
(2)在(1)的条件下,作于F,在运动过程中,线段长度是否发生变化,如果不变,求出的长;如果变化,请说明理由.
(3)如图3,当时,平行四边形的面积是,那么在运动中是否存在某一时刻,点P,Q关于点E成中心对称,若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,将两张正方形纸片A与三张正方形纸片B放在一起(不重叠无缝隙),拼成一个宽为10的长方形,求正方形纸片A、B的边长.
(2)如图2,将一张正方形纸片D放在一正方形纸片C的内部,阴影部分的面积为4;如图3,将正方形纸片C、D各一张并列放置后构造一个新的正方形,阴影部分的面积为48,求正方形C、D的面积之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某城市接到台风警报,在该市正南方向的处有一台风中心,沿方向以的速度移动,已知城市到的距离.
(1)台风中心经过多长时间从移动到点?
(2)已知在距台风中心的圆形区域内都会受到不同程度的影响,若在点的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图, 请根据图中提供的信息,完成下列问题:
(1)此次共调查了 人;
(2)求文学社团在扇形统计图中所占圆心角为 度;
(3)请将条形统计图补充完整;
(4)若该校有 1500 名学生,请估计喜欢体育类社团的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售A,B两种品牌的多媒体教学设备,这两种多媒体教学设备的进价和售价如表所示.
(1)若该商场计划购进两种多媒体教学设备若干套,共需124万元,全部销售后可获毛利润36万元.则该商场计划购进A,B两种品牌的多媒体教学设备各多少套?
(2)通过市场调研,该商场决定在(1)中所购总数量不变的基础上,减少A种设备的购进数量,增加B种设备的购进数量.若用于购进这两种多媒体教学设备的总资金不超过120万元,且全部销售后可获毛利润不少于33.6万元.问有几种购买方案?并写出购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商场销售某种冰箱,该种冰箱每台进价为2500元.已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了x元.
(1)填表(不需化简):
每天的销售量/台 | 每台销售利润/元 | |
降价前 | 8 | 400 |
降价后 |
(2)商场为使这种冰箱平均每天的销售利润达到5000元,则每台冰箱的实际售价应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与y轴交于点B(0,3),与x轴交于点 A.
(1)求抛物线的解析式;
(2)M(m,0)为轴上一动点,过点M且垂直于轴的直线与直线AB及抛物线分别交于点P,N.
①点M在线段OA上运动,若以B,P,N为顶点的三角形与APM相似,求点M的坐标;
②点M在轴上自由运动,若三个点M、P、N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的 m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com