精英家教网 > 初中数学 > 题目详情

【题目】(1)如图1,将两张正方形纸片A与三张正方形纸片B放在一起(不重叠无缝隙),拼成一个宽为10的长方形,求正方形纸片AB的边长.

(2)如图2,将一张正方形纸片D放在一正方形纸片C的内部,阴影部分的面积为4;如图3,将正方形纸片CD各一张并列放置后构造一个新的正方形,阴影部分的面积为48,求正方形CD的面积之和.

【答案】(1)AB的边长分别为46(2)52.

【解析】

1)设正方形AB的边长分别为ab,由题意得:正方形a的边长+正方形B的边长=102个正方形A的边长=3个正方形B的边长,根据等量关系列出方程组,再解即可;
2)设正方形CD的边长为cd,由图2得:(c-d2=4,由图3得:(c+d2-c2-d2=48,然后两个方程组合可得c2+d2的值.

1)设正方形AB的边长分别为ab,由题意得:
解得:
答:正方形AB的边长分别为64

2)设正方形CD的边长为cd,则:
由图2得:(c-d2=4,即:c2-2cd+d2=4
由图3得:(c+d2-c2-d2=48,即2dc=48
c2+d2-48=4
c2+d2=52
即正方形CD的面积和为52

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】根据下表回答问题:

x

16

16.1

16.2

16.3

16.4

16.5

16.6

16.7

16.8

x2

256

259.21

262.44

265.69

268.96

272.25

175.56

278.89

282.24

(1)272.25的平方根是      

(2) =       =       =      

(3)设 的整数部分为a,求﹣4a的立方根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】感知:如图①ABC是等腰直角三角形,∠ACB=90°,正方形CDEF的顶点DF分别在边ACBC上,易证:AD=BF(不需要证明);

探究:将图①的正方形CDEF绕点C顺时针旋转αα90°),连接ADBF,其他条件不变,如图②,求证:AD=BF

应用:若α=45°CD=BE=1,如图③,则BF=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线y= x2+bx+c与x轴、y轴分别相交于点A 1,0)、B(0,3)两点,其顶点为D

(1)求这条抛物线的解析式;

(2)若抛物线与x轴的另一个交点为E. 求△ODE的面积;抛物线的对称轴上是否存在点P使得△PAB的周长最短。若存在请求出P点的坐标,若不存在说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一次函数ykx+b的图象与反比例函数y的图象交于MN两点.

1)根据图中条件求出反比例函数和一次函数的解析式;

2)连结OMON,求MON的面积;

3)根据图象,直接写出使一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形中,上一动点,,过,连接,过,下列有四个结论:的周长为定值,其中正确的结论有( ).

A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=x+4的图象与二次函数y=ax(x﹣2)的图象相交于A(﹣1,b)和B,点P是线段AB上的动点(不与A、B重合),过点P作PC⊥x轴,与二次函数y=ax(x﹣2)的图象交于点C.

(1)求a、b的值及B点的坐标;

(2)求线段PC长的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于点OOE平分∠BOD.

(1)若∠AOC=70°,DOF=90°,求∠EOF的度数;

(2)OF平分∠COE,BOF=15°,求∠AOC的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地电话拨号入网有两种收费方式,用户可以任选其一.

计时制:0.05/;

包月制:50/(限一部个人住宅电话上网).

此外,每一种上网方式都得加收通信费0.02/.

(1)某用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户应该支付的费用.

(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?

查看答案和解析>>

同步练习册答案