精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,已知⊙O的半径为1,菱形ABCD的三个顶点A、B、D在⊙O上,且CD与⊙O相切.
(1)求证:BC与⊙O相切;
(2)求阴影部分面积.

【答案】
(1)证明:连结OB、OD、OC,

∵ABCD是菱形,

∴CD=CB,

∵OC=OC,OD=OB,

∴△OCD≌△OCB,

∴∠ODC=∠OBC,

∵CD与⊙O相切,∴OD⊥CD,

∴∠OBC=∠ODC=90°,

即OB⊥BC,点B在⊙O上,

∴BC与⊙O相切.


(2)解:∵ABCD是菱形,

∴∠A=∠DCB,

∵∠DOB与∠A所对的弧都是

∴∠DOB=2∠A,

由(1)知∠DOB+∠C=180°,

∴∠DOB=120°,∠DOC=60°,

∵OD=1,∴OC=2,DC=

∴S阴影=2SDOC﹣S扇形OBD=2× ×1× = π.


【解析】(1)连结OB、OD、OC,只要证明△OCD≌△OCB,推出∠ODC=∠OBC,由CD与⊙O相切推出OD⊥CD,推出∠OBC=∠ODC=90°,由此即可证明;(2)根据S阴影=2SDOC﹣S扇形OBD计算即可;
【考点精析】通过灵活运用菱形的性质和扇形面积计算公式,掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半;在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2)即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图, 的中线, 是线段 上一点(不与点 重合). 于点 ,连结

(1)如图1,当点 重合时,求证:四边形 是平行四边形;
(2)如图2,当点 不与 重合时,(1)中的结论还成立吗?请说明理由.
(3)如图3,延长 于点 ,若 ,且 .当 时,求 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商人制成了一个如图所示的转盘,取名为开心大转盘,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母A,则收费2元,若指针指向字母B,则奖励3元;若指针指向字母C,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明袋子中有1个红球、1 个绿球和n个白球,这些球除颜色外都相同.
(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀,不断重复该试验.发现摸到白球的频率稳定在0.75,则n的值为
(2)当n=2时,把袋中的球搅匀后任意摸出2个球,求摸出的2个球颜色不同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边ACD,连接BD,则BD所在直线与OA所在直线的位置关系是(  )

A. 平行 B. 相交 C. 垂直 D. 平行、相交或垂直

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,A(2018,0),B(0,2014),以 AB 为斜边作等腰RtABC,则 C点坐标为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAP+APD=180°,∠1=2,求证:∠E=F

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数ykxb的图象经过A(2,1)B(13)两点,并且交x轴于点C,交y轴于点D.

1)求该一次函数的解析式;

2)求点C和点D的坐标;

3)求△AOB的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,

(1)写出数轴上点B所表示的数   

(2)点P所表示的数   ;(用含t的代数式表示);

(3)MAP的中点,NPB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,说明理由;若不变,请你画出图形,并求出线段MN的长.

查看答案和解析>>

同步练习册答案