精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若原方程的两个实数根为x1、x2 , 且满足x12+x22=|x1|+|x2|+2x1x2 , 求m的值.

【答案】
(1)解:∵方程x2﹣2(m+1)x+m2+5=0有两个不相等的实数根,

∴△=[﹣2(m+1)]2﹣4(m2+5)=8m﹣16>0,

解得:m>2.


(2)解:∵原方程的两个实数根为x1、x2

∴x1+x2=2(m+1),x1x2=m2+5.

∵m>2,

∴x1+x2=2(m+1)>0,x1x2=m2+5>0,

∴x1>0、x2>0.

∵x12+x22= ﹣2x1x2=|x1|+|x2|+2x1x2

∴4(m+1)2﹣2(m2+5)=2(m+1)+2(m2+5),即6m﹣18=0,

解得:m=3


【解析】(1)由方程有两个不相等的实数根结合根的判别式即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)根据根与系数的关系即可得出x1+x2=2(m+1)、x1x2=m2+5,结合m的取值范围即可得出x1>0、x2>0,再由x12+x22=|x1|+|x2|+2x1x2即可得出6m﹣18=0,解之即可得出m的值.
【考点精析】关于本题考查的求根公式和根与系数的关系,需要了解根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径OB=1,弦AC=1,点D在⊙O上,则∠D的度数是(
A.60°
B.45°
C.75°
D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于M,N两点.
(1)求反比例函数与一次函数的解析式;
(2)根据图象写出使反比例函数的值大于一次函数的值的x的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.

(1)求抛物线的函数表达式;
(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;
(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:
(1)2x2﹣x=1
(2)x2+4x+2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为( ,1),下列结论:①ac<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正确结论的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠ABC=∠ADC=90°,BD⊥AC,垂足为P.
(1)请作出Rt△ABC的外接圆⊙O;(保留作图痕迹,不写作法)
(2)点D在⊙O上吗?说明理由;
(3)试说明:AC平分∠BAD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知双曲线y= (x>0),直线l1:y﹣ =k(x﹣ )(k<0)过定点F且与双曲线交于A,B两点,设A(x1 , y1),B(x2 , y2)(x1<x2),直线l2:y=﹣x+

(1)若k=﹣1,求△OAB的面积S;
(2)若AB= ,求k的值;
(3)设N(0,2 ),P在双曲线上,M在直线l2上且PM∥x轴,问在第二象限内是否存在一点Q,使得四边形QMPN是周长最小的平行四边形?若存在,请求出Q点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有一个正六边形的纸片,该纸片的边长为20cm,张萌想用一张圆形纸片将该正六边形纸片完全覆盖住,则圆形纸片的直径不能小于 cm.

查看答案和解析>>

同步练习册答案