精英家教网 > 初中数学 > 题目详情

【题目】如图所示,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于M,N两点.
(1)求反比例函数与一次函数的解析式;
(2)根据图象写出使反比例函数的值大于一次函数的值的x的范围.

【答案】
(1)解:将N(﹣1,﹣4)代入反比例解析式得:k=4,即反比例解析式为y=

将M(2,m)代入反比例解析式得:m=2,即M(2,2),

将M与N坐标代入一次函数解析式得:

解得:

∴一次函数解析式为y=2x﹣2


(2)解:根据图象得:反比例函数的值大于一次函数的值的x的取值范围为0<x<2或x<﹣1.
【解析】(1)将N坐标代入反比例函数解析式求出k的值,确定出反比例解析式,将M坐标代入反比例解析式求出m的值,确定出M坐标,将M与N坐标代入一次函数解析式求出a与b的值,即可确定出一次函数解析式;(2)由M与N横坐标,以及0,将x轴分为四个范围,找出反比例函数图象位于一次图象上方时x的范围即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:关于x的方程x2﹣(m+2)x+m+1=0.
(1)求证:该方程总有实数根;
(2)若二次函数y=x2﹣(m+2)x+m+1(m>0)与x轴交点为A,B(点A在点B的左边),且两交点间的距离是2,求二次函数的表达式;
(3)横、纵坐标都是整数的点叫做整点.
在(2)的条件下,垂直于y轴的直线y=n与抛物线交于点E,F.若抛物线在点E,F之间的部分与线段EF所围成的区域内(包括边界)恰有7个整点,结合函数的图象,直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=﹣x+2经过A、C两点,且AB=2.

(1)求抛物线的解析式;
(2)若直线l平行于x轴,直线l从点C出发以每秒1个单位长度的速度沿y轴负半轴方向向点O运动,到点O停止,且分别交线段AC、线段BC、抛物线、y轴于点E、D、F(点F在对称轴的右侧)、H,当点D是线段EF的三等分点时,求t的值;
(3)如图②,在直线l运动的过程中,过点D作x轴的垂线交x轴于点G,四边形OHDG与△AOC重叠部分的面积为S,求S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.
(1)求m的取值范围;
(2)写出一个满足条件的m的值,并求此时方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y= (k≠0)中k的值的变化情况是(
A.一直增大
B.一直减小
C.先增大后减小
D.先减小后增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AC、EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°,当四边形ABCD和EFCG均为正方形时,连接BF.
(1)求证:△CAE∽△CBF;
(2)若BE=1,AE=2,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若原方程的两个实数根为x1、x2 , 且满足x12+x22=|x1|+|x2|+2x1x2 , 求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在菱形ABCD中,AC=2,BD=2 ,AC,BD相交于点O.
(1)求边AB的长;
(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G. ①判断△AEF是哪一种特殊三角形,并说明理由;
②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.

查看答案和解析>>

同步练习册答案