| A. | 4 | B. | 2+$\sqrt{13}$ | C. | 5 | D. | 4+$\sqrt{13}$ |
分析 根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线AE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.
解答 解:作CE⊥AD于点E,如下图所示,![]()
由图象可知,点P从A到B运动的路程是2,当点P与点B重合时,△ADP的面积是5,由B到C运动的路程为2,
∴$\frac{AD•AB}{2}=\frac{AD×2}{2}=5$,
解得,AD=5,
又∵BC∥AD,∠A=90°,CE⊥AD,
∴∠B=90°,∠CEA=90°,
∴四边形ABCE是矩形,
∴AE=BC=2,
∴DE=AD-AE=5-2=3,
∴CD=$\sqrt{C{E}^{2}+D{E}^{2}}=\sqrt{{2}^{2}+{3}^{2}}=\sqrt{13}$,
∴点P从开始到停止运动的总路程为:AB+BC+CD=2+2+$\sqrt{13}$=4+$\sqrt{13}$,
故选D.
点评 本题考查动点问题的函数图象,解题的关键是明确题意,能从函数图象中找到我们需要的信息,利用数形结合的思想解答问题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com