【题目】如图,在平行四边形ABCD中,E为BC边上的一点,且AE与DE分别平分∠BAD和∠ADC
(1)求证:AE⊥DE;
(2)设以AD为直径的半圆交AB于F,连结DF交AE于G,已知CD=5,AE=8.
①求BC的长;
②求 值.
【答案】
(1)
证明:在平行四边形ABCD中,∵AB∥CD,
∴∠BAD+∠ADC=180°.
又∵AE、DE平分∠BAD、∠ADC,
∴∠DAE+∠ADE=90°,
∴∠AED=90°,
∴AE⊥DE
(2)
解:①在平行四边形ABCD中,∵AD∥BC,AB=CD=5,AD=BC,
∴∠DAE=∠BEA,
又∵AE平分∠BAD,即∠DAE=∠BAE,
∴∠BEA=∠BAE,
∴BE=AB=5,
同理EC=CD=5,
∴BC=BE+EC=10,
②∵AD=BC=10,AE=8,
在Rt△AED中,DE= = =6,
又∵AE是∠BAD的角平分线,
∴∠FAG=∠DAE,
∵AD是直径,
∴∠AFD=90°,
∴tan∠FAG= ,
∴ =tan∠DAE= = = .
【解析】(1)由∠BAD+∠ADC=180°.又因为AE、DE平分∠BAD、∠ADC,推出∠DAE+∠ADE=90°,即可推出∠AED=90°,由此即可解决问题.(2)①只要证明BA=BW,CD=CE即可解决问题.②由tan∠FAG= ,可得 =tan∠DAE= ,求出DE即可解决问题.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为( )
A.60°
B.67.5°
C.75°
D.54°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC内有边长分别为a,b,c的三个正方形,则a,b,c满足的关系式是( )
A.b=a+c
B.b=ac
C.b2=a2+c2
D.b=2a=2c
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,双曲线y= (x>0)与直线EF交于点A,点B,且AE=AB=BF,连结AO,BO,它们分别与双曲线y= (x>0)交于点C,点D,则:
(1)①AB与CD的位置关系是;
②四边形ABDC的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.
(1)求证:AC∥DE;
(2)若BF=13,EC=5,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线 (k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=4﹣x与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D.
(1)当点M在AB上运动时,则四边形OCMD的周长= .
(2)当四边形OCMD为正方形时,将正方形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a≤4),在平移过程中,当平移距离a为多少时,正方形OCMD的面积被直线AB分成1:3两个部分?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com