【题目】阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫做这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫做这个圆的内接正四边形.
如图,正方形ABCD内接于⊙O,⊙O的面积为S1,正方形ABCD的面积为S2.以圆心O为顶点作∠MON,使∠MON=90°.将∠MON绕点O旋转,OM、ON分别与⊙O交于点E、F,分别与正方形ABCD的边交于点G、H.设由OE、OF、及正方形ABCD的边围成的图形(阴影部分)的面积为S.
(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为: (用含S1、S2的代数式表示);
(2)当OM⊥AB于G时(如图②),则(1)中的结论仍然成立吗?请说明理由;
(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论任然成立吗:请说明理由.
【答案】(1);
(2)(1)中的结论仍然成立,理由见解析;
(2)(1)中的结论仍然成立,理由见解析.
【解析】试题分析:(1)结合正方形的性质及等腰直角三角形的性质,容易得出结论;
(2)仍然成立,可证得四边形OGHB为正方形,则可求出阴影部分的面积为扇形OEF的面积减去正方形OGBH的面积;
(3)仍然成立,过O作OR⊥AB,OS⊥BC,垂足分别为R、S,则可证明△ORG≌△OSH,可得出四边形ORBS的面积=四边形OGBH的面积,再利用扇形OEF的面积减正方形ORBS的面积即可得出结论.
试题解析:(1)当OM经过点A时由正方形的性质可知:∠MON=90°,
∴S△OAB=S正方形ABCD=S2,S扇形OEF=S圆O=S1,
∴S=S扇形OEF-S△OAB=S圆O-S正方形ABCD=S1-S2=(S1-S2),
(2)结论仍然成立,理由如下:
∵∠EOF=90°,
∴S扇形OEF=S圆O=S1
∵∠OGB=∠EOF=∠ABC=90°,
∴四边形OGBH为矩形,
∵OM⊥AB,
∴BG=AB=BC=BH,
∴四边形OGBH为正方形,
∴S四边形OGBH=BG2=(AB)2=S2,
∴S=S扇形OEF-S四边形OGBH=S1-S2=(S1-S2);
(3)(1)中的结论仍然成立,理由如下:
∵∠EOF=90°,
∴S扇形OEF=S圆O=,
过O作OR⊥AB,OS⊥BC,垂足分别为R、S,
由(2)可知四边形ORBS为正方形,
∴OR=OS,
∵∠ROS=90°,∠MON=90°,
∴∠ROG=∠SOH=90°-∠GOS,
在△ROG和△SOH中,
,
∴△ROG≌△SOH(ASA),
∴S△ORG=S△OSH,
∴S四边形OGBH=S正方形ORBS,
由(2)可知S正方形ORBS=S2,
∴S四边形OGBH=S2,
∴S=S扇形OEF-S四边形OGBH=(S1-S2).
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;
(3)求PAC为直角三角形时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是( )
A. 有两个不相等实数根 B. 有两个相等实数根
C. 有且只有一个实数根 D. 没有实数根
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个三角形的两边长分别为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是( )
A. 11 B. 11或13 C. 13 D. 以上选项都不正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某出租车的收费标准是:起步价7元(只要行驶距离不超过3km,都需付款7元),超过3km,往后毎增加1千米增收2.4元(不足1km按1km计算).现从A地到B地共支出车费19元.那么,他行驶的最大路程是( )
A.9km
B.8km
C.7km
D.5km
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,BC=3 cm,AC=4 cm,以点C为圆心,以2.5 cm为半径画圆,则⊙C与直线AB有何种位置关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年漳州市生产总值突破3000亿元,数字3000亿用科学记数法表示为( )
A.3×1012
B.30×1011
C.0.3×1011
D.3×1011
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com