【题目】如图1,抛物线与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C(0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.
(1)求该抛物线所对应的函数解析式;
(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;
(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.
①若∠APE=∠CPE,求证:;
②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.
【答案】(1);(2)15;(3)①证明见解析;②P(﹣1,0),(﹣2,3),(,).
【解析】
试题分析:(1)设交点式为y=a(x+5)(x+1),然后把C点坐标代入求出a即可;
(2)先利用待定系数法求出直线AC的解析式为y=﹣x﹣5,作PQ∥y轴交AC于Q,如图1,由P点坐标得到Q(﹣2,﹣3),则PQ=6,然后根据三角形面积公式,利用S△APC=S△APQ+S△CPQ进行计算;
(3)①由∠APE=∠CPE,PH⊥AD可判断△PAD为等腰三角形,则AH=DH,设P(x,),则OH=﹣x,OD=﹣x﹣DH,通过证明△PHD∽△COD,利用相似比可表示出DH=,则,则解方程求出x可得到OH和AH的长,然后利用平行线分线段成比例定理计算出;
②设P(x,),则E(x,﹣x﹣5),分类讨论:当PA=PE,易得点P与B点重合,此时P点坐标为(﹣1,0);当AP=AE,如图2,利用PH=HE得到,当E′A=E′P,如图2,AE′=E′H′=(x+5),P′E′=,则,然后分别解方程求出x可得到对应P点坐标.
试题解析:(1)解:设抛物线解析式为y=a(x+5)(x+1),把C(0,﹣5)代入得a51=﹣5,解得a=﹣1,所以抛物线解析式为y=﹣(x+5)(x+1),即;
(2)解:设直线AC的解析式为y=mx+n,把A(﹣5,0),C(0,﹣5)代入得:,解得:,∴直线AC的解析式为y=﹣x﹣5,作PQ∥y轴交AC于Q,如图1,则Q(﹣2,﹣3),∴PQ=3﹣(﹣3)=6,∴S△APC=S△APQ+S△CPQ=PQ5=×6×5=15;
(3)①证明:∵∠APE=∠CPE,而PH⊥AD,∴△PAD为等腰三角形,∴AH=DH,设P(x,),则OH=﹣x,OD=﹣x﹣DH,∵PH∥OC,∴△PHD∽△COD,∴PH:OC=DH:OD,即():5=DH:(﹣x﹣DH),∴DH=,而AH+OH=5,∴,整理得:,解得,(舍去),∴OH=,∴AH==,∵HE∥OC,∴===;
②能.设P(x,),则E(x,﹣x﹣5),当PA=PE,因为∠PEA=45°,所以∠PAE=45°,则点P与B点重合,此时P点坐标为(﹣1,0);
当AP=AE,如图2,则PH=HE,即,解,得(舍去),(舍去);解,得(舍去),,此时P点坐标为(﹣2,3);
当E′A=E′P,如图2,AE′=E′H′=(x+5),P′E′==,则,解得(舍去),,此时P点坐标为(,).
综上所述,满足条件的P点坐标为(﹣1,0),(﹣2,3),(,).
科目:初中数学 来源: 题型:
【题目】用两种方法证明“三角形的外角和等于360°”.
如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.
求证∠BAE+∠CBF+∠ACD=360°.
证法1:∵ ,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°
∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).
∵ ,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.
请把证法1补充完整,并用不同的方法完成证法2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).
(1)画出△ABC关于y轴对称的△A1B1C1;
(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.
(1)求证:PQ∥AB;
(2)若点D在∠BAC的平分线上,求CP的长;
(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果,△ABC旋转后能与△ADE重合,那么哪一点是旋转中心?旋转了多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,∠BAC=90°,AD⊥BC,垂足为D,则给出下列结论:
①AB与AC互相垂直
②AD与AC互相垂直
③点C到AB的垂线段是线段AB
④点A到BC的距离是线段AD
⑤线段AB的长度是点B到AC的距离
⑥线段AB是点B到AC的距离.
其中正确的有( )
A.2个
B.3个
C.4个
D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC绕原点逆时针旋转90°,得到△A1B1C1,△A1B1C1向右平移6个单位,再向上平移2个单位得到△A2B2C2.
(1)画出△A1B1Cl和△A2B2C2;
(2)P(a,b)是△ABC的AC边上一点,△ABC经旋转、平移后点P的对应点分别为P1、P2,请写出点P1、P2的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com